

AFFECTIVE PROFILE OF PATIENTS WITH EPILEPSY: CLINICAL AND SOCIODEMOGRAPHIC INSIGHTS

Natalia DOTEN,

Moldova State University

Aurelia GLAVAN,

National Centre of Epileptology

Affective disorders, particularly depression and anxiety, are common comorbidities in individuals with epilepsy, significantly affecting quality of life, treatment adherence, and disease progression. This study explores the affective profile of individuals diagnosed with epilepsy, with a focus on differences between those with drug-resistant epilepsy and those with well-controlled epilepsy. Sociodemographic variables (gender, age, professional status, educational level, living environment and marital status) and clinical factors (aetiology, disease duration and seizure frequency) were analysed. The results indicate a significantly higher prevalence of depressive and anxious symptoms among individuals with drug-resistant epilepsy – particularly those with unknown aetiology, high seizure frequency, or a vulnerable sociodemographic profile. The most at-risk subgroups include divorced individuals, the unemployed, those with vocational or technical education, and individuals with epilepsy of unknown origin. These findings highlight the importance of routine affective screening and the integration of psychological support within the multidisciplinary management of epilepsy, particularly for individuals with drug-resistant epilepsy.

Keywords: epilepsy, affective disorders, depression, anxiety.

PROFILUL AFECTIV AL PACIENTILOR CU EPILEPSIE: PERSPECTIVE CLINICE ȘI SOCIODEMOGRAFICE

Tulburările afective, în special depresia și anxietatea, reprezintă comorbidități frecvente în epilepsie, având un impact semnificativ asupra calității vieții, aderenței la tratament și evoluției bolii. Acest studiu investighează profilul afectiv al persoanelor cu epilepsie, evidențiind diferențele între pacienții cu epilepsie farmacorezistentă și cei cu epilepsie medicamentos controlată. Au fost analizate variabile sociodemografice (precum genul, vârsta, statutul profesional, nivelul de educație, mediul de trai și statutul marital) și caracteristici clinice (inclusiv etiologia, durata bolii și frecvența crizelor epileptice). Rezultatele indică o prevalență semnificativ mai mare a simptomelor depresive și anxioase în rândul persoanelor cu epilepsie farmacorezistentă – în special în cazul celor cu etiologie necunoscută, frecvență crescută a crizelor sau cu profil socio-demografic vulnerabil. Subgrupurile cele mai expuse includ persoanele divorțate, șomerii, cei cu studii profesionale sau tehnice, precum și persoanele cu epilepsie de cauză necunoscută. Aceste constatări subliniază importanța realizării sistematice a unui screening afectiv și a integrării sprijinului psihologic în cadrul managementului multidisciplinar al epilepsiei, mai ales pentru pacienții cu epilepsie farmacorezistentă.

Cuvinte-cheie: epilepsie, tulburări afective, depresie, anxietate.

Introduction

Epilepsy is a chronic neurological condition characterized by a persistent predisposition to generate epileptic seizures, associated with neurobiological, cognitive, psychological, and social consequences [4]. This condition significantly affects the patient's quality of life, both physically and psychologically, with emotional aspects being influenced by an increased risk of depression and anxiety.

The relationship between depression and epilepsy has been recognized for millennia. Nearly 2,000 years ago, Hippocrates observed a bidirectional connection between the two conditions, noting that “melancholic individuals often become epileptic, and epileptics become melancholic. It all depends on which way the illness goes—if it moves through the body, it leads to epilepsy, and if it moves through the mind, it leads

to melancholy" [10]. This early insight suggests a shared underlying vulnerability that can manifest either somatically, as epilepsy, or psychologically, as depression. Moreover, it implies that these disorders frequently co-occur individuals with depression may later develop epilepsy, and vice versa. Modern research has supported Hippocrates' observation. A longitudinal study by Hesdorffer (2012) demonstrated an increased risk of psychiatric symptoms and suicidality in individuals with epilepsy, both preceding and following diagnosis [6]. Further work by Kanner and Ribot (2018) corroborated the bidirectional nature of the relationship, confirming that depression not only follows but may also precede and potentially contribute to the onset of epilepsy [7].

The association between epilepsy and mood disorders has been recognized for more than two millennia; however, the specific relationship between seizures and emotional disturbances has only recently become better understood. Emotional symptoms, such as depression and anxiety, may be persistent or may occur in close temporal relation to seizures—emerging in the preictal, ictal, or postictal phases. Identifying and characterizing these affective changes on an individual basis is crucial for accurate diagnosis, prognosis, and the selection of the most appropriate therapeutic approach.

According to the National Clinical Protocol (PCN-255), published in 2016, depression encompasses a broad spectrum of mental health disturbances. It is primarily characterized by the absence of a positive emotional baseline - manifested as a loss of interest or pleasure in daily or previously enjoyable activities - along with a persistently low mood. Additionally, depression involves a constellation of emotional, cognitive, physical, and behavioural symptoms that can significantly impair an individual's functioning [11].

Today, despite progress in understanding and managing drug-resistant epilepsy, issues related to depression remain poorly understood. However, researchers have attempted to classify depressive episodes and symptoms in people with epilepsy based on their timing [9]:

- Before the seizure (*preictal*) – characterized by dysphoric moods.
- During the seizure (*ictal*) – including symptoms like anhedonia, feelings of guilt, suicidal thoughts, and religious experiences.
- After the seizure (*postictal*) – marked by low frustration tolerance, loss of interest, helplessness, shame, irritability, feelings of worthlessness, guilt, hopelessness, and suicidal thoughts.
- Between seizures (*interictal*) – involving conditions such as major depressive disorder, dysthymia, and cyclothymia.

Anxiety is the second most common psychiatric comorbidity in epilepsy, although some authors suggest that it is as prevalent as depressive disorder. From a psychosocial perspective, anxiety may develop because of living with a chronic, unpredictable, and difficult-to-treat illness. In the context of epilepsy, it is worth noting that individuals with this condition most frequently express fears related to the recurrence of seizures, physical injury and death, loss of relationships, restriction of autonomy, and the loss of income or employment. The relationship between anxiety and epilepsy is multifaceted: anxious symptoms may occur as psychological reactions to the diagnosis, as direct manifestations of seizure activity, or as side effects of certain antiepileptic drugs. In many cases, anxiety emerges after the initial diagnosis or following the first seizure and is commonly characterized by a persistent fear of seizure recurrence. Social isolation, perceived stigma, and rejection may further intensify these symptoms. Importantly, psychiatric manifestations in epilepsy may be seizure-related or may present independently, as distinct comorbid psychiatric disorders. The temporal relationship between anxiety disorders and epilepsy can be classified into *preictal symptoms* (occurring before the seizure), *ictal symptoms* (during the seizure), *postictal symptoms* (12–72 hours after the seizure), and *interictal symptoms* (occurring between seizures). All these symptoms are manifested through varying degrees of fear, restlessness, extreme agitation, or immobility associated with a terrified gaze [9].

The aim of this study is to investigate the affective profile of patients with epilepsy by assessing the prevalence and severity of depressive and anxiety symptoms in relation to key clinical (aetiology, disease duration, seizure frequency) and sociodemographic (gender, age, professional status, educational level, living environment, marital status) factors. The research specifically focuses on identifying and comparing affective characteristics in patients with drug-resistant epilepsy versus those with well-controlled epilepsy.

The study sample: the research was conducted at the Institute of Emergency Medicine, National Epileptology Centre. The subjects included in the study were individuals diagnosed with epilepsy, aged between 18 and 62 years, selected based on diagnoses of *drug-resistant epilepsy* and *well-controlled epilepsy* established by an epileptologist at the National Epileptology Centre. The study was conducted on a group of 102 epilepsy subjects, of whom 62 had drug-resistant epilepsy and 40 had well-controlled epilepsy. Subjects with dementia or severe cognitive disorders were excluded from the study. The general characteristics of the experimental subjects are presented in Table 1.

Table 1. Presentation of general data of experimental subjects

	General data <i>Number</i>	Drug-resistant		Well-controlled	
		%	<i>Number</i>	%	
1. Number	Total subjects -102	62	62	40	38
2. Gender	Men	30	48	20	50
	Women	32	52	20	50
3. Age (years)	18-19	2	3	1	3
	20-29	18	29	16	40
	30-39	23	37	13	33
	40-49	15	24	7	18
	50-59	2	3	3	8
	60-69	2	3	0	0
4. Education	Secondary education	29	47	10	25
	Professional technical studies	18	29	6	15
	Higher education	15	24	24	60
5. Professional status	Employed	17	27	32	80
	Unemployed	43	69	6	15
	Pensioner	1	2	0	0
	Student	1	2	2	5
6. Marital status	Married	23	37	14	35
	Single	29	47	24	60
	Divorced	10	16	2	5
7. Living environment	Urban	33	53	21	53
	Rural	29	47	19	48
8. Disease duration (years)	0-9	3	5	15	38
	10-19	24	39	15	38
	20-29	26	42	6	15
	30-39	5	8	3	8
	40-49	3	5	1	3
	50-59	1	2	0	0
9. Aetiology of epilepsy	Structural	43	69	25	63
	Unknown	13	21	12	30
	Genetic	6	10	3	8
10. Frequency of seizures	1 – 10/month	43	69	-	-
	11 – 20/month	5	8	-	-
	More than 20/month	14	23	-	-

Materials and Methods:

- *empirical methods*: clinical interviews were conducted to gather qualitative data, while the Beck Depression Inventory (BDI) was used to assess the severity of depressive symptoms, and the Hamilton Anxiety Rating Scale (HAM-A) measured the severity of anxiety symptoms.

- *statistical methods*: data analysis included frequency and percentage calculations, descriptive statistics for mean comparisons, and inferential analysis using independent samples *t*-tests to examine differences in mean scores between groups.

Results and discussions

Results of the Beck Depression Inventory (BDI)

Data analysis revealed that depression was present in 44 participants (43% of the total sample), with a prevalence of 56% (35 subjects) in the drug-resistant epilepsy group and 23% (9 subjects) in the well-controlled epilepsy group. These findings are illustrated in Figure 1.

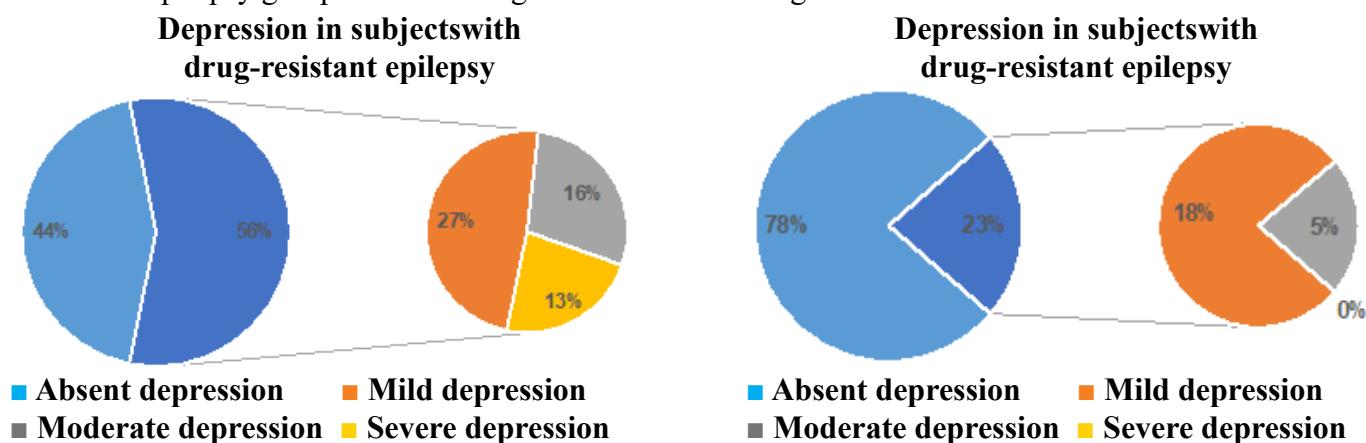


Figure 1. Depression levels in drug-resistant vs. well-controlled epilepsy

Additionally, depression severity was analysed within each group separately. In the drug-resistant epilepsy group, 56% of subjects exhibited depressive symptoms, distributed as 27% mild, 16% moderate, and 13% severe depression. In contrast, the well-controlled epilepsy group showed a more favourable profile, with only 23% of subjects experiencing depression - 18% mild, 5% moderate, and no cases of severe depression. These data are illustrated in Figure 1.

Regarding the Beck Depression Inventory, following the application of the *t*-test, it was found that subjects with drug-resistant epilepsy ($M = 13.63$, $SD = 10.85$) had mean scores 6.55 points higher than those with well-controlled epilepsy ($M = 7.08$, $SD = 5.92$). The *t*-test values ($t = 3.50$, $p = 0.001$) indicate that this difference is statistically significant.

Analysis of depression in relation to demographic and clinical factors

Depressive symptoms by gender. Depressive symptoms were observed in 66% of women with drug-resistant epilepsy compared to 20% of women with well-controlled epilepsy, indicating that women with drug-resistant epilepsy are 3.3 times more likely to experience depression than women with controlled epilepsy. Among men, depressive symptoms were present in 47% of those with drug-resistant epilepsy versus 25% in those with well-controlled epilepsy, corresponding to a 1.88-fold increase. When analysing the entire sample, the *t*-test comparing depression levels between men and women yielded a value of $t = 1.6$ with a p -value of 0.102, indicating that the difference in depression severity between genders was not statistically significant.

Depressive symptoms by age. Depression was found to be more prevalent among younger individuals aged 18 to 49 years (50–61%), while in the well-controlled epilepsy group, the highest prevalence (33%) was observed in subjects aged 50 to 59 years.

Depressive symptoms by education level. Subjects with higher education exhibited the lowest prevalence of depression in both drug-resistant and well-controlled epilepsy groups (40% drug-resistant vs. 17%

well-controlled). Conversely, the highest rates of depression were found among subjects with vocational or technical education (67% drug-resistant vs. 50% well-controlled). Furthermore, analysis of the total sample revealed significant differences between mean depression scores according to education level: subjects with secondary education ($M = 13.76$, $SD = 10.72$), technical education ($M = 14.44$, $SD = 12.05$), and higher education ($M = 7.05$, $SD = 6.12$). These differences were statistically significant ($t = 6.76$, $p = 0.002$).

Depressive symptoms by employment status. Depression predominates among unemployed subjects, both in the drug-resistant group (63%) and in the well-controlled group (17%). Analysis of the total sample revealed significant differences ($t = -3.35$, $p = 0.001$) between employed subjects ($M = 8.04$, $SD = 7.02$) and unemployed subjects ($M = 14.2$, $SD = 11.17$).

Depressive symptoms by marital status. The highest prevalence of depression was found among divorced drug-resistant subjects (80% drug-resistant vs. 0% well-controlled), followed by single subjects (61% drug-resistant vs. 7% well-controlled), and lastly married subjects (45% drug-resistant vs. 33% well-controlled). These results suggest that individuals with epilepsy who are single may be most affected by depression, often abandoned in their illness, lacking employment, suffering from stigma, tending to socially isolate, reinforcing negative beliefs about their condition, and deepening their depressive states. Additionally, analysis of the total sample revealed differences in mean depression scores among married ($M = 10.62$, $SD = 8.81$), divorced ($M = 14.75$, $SD = 10.60$), and single subjects ($M = 10.49$, $SD = 10.72$); however, these differences were not statistically significant ($t = 0.98$, $p = 0.38$).

Depressive symptoms by living environment. We found that drug-resistant subjects from rural areas exhibit higher rates of depression (59%) compared to those from urban areas (55%). A similar trend was observed among well-controlled subjects, with a higher prevalence of depression in rural areas (26%) compared to urban areas (19%). This situation can be explained by employment restrictions, difficulties in finding jobs compatible with epilepsy, social isolation due to rural depopulation and migration effects, as well as a lack of mental health specialists in rural regions.

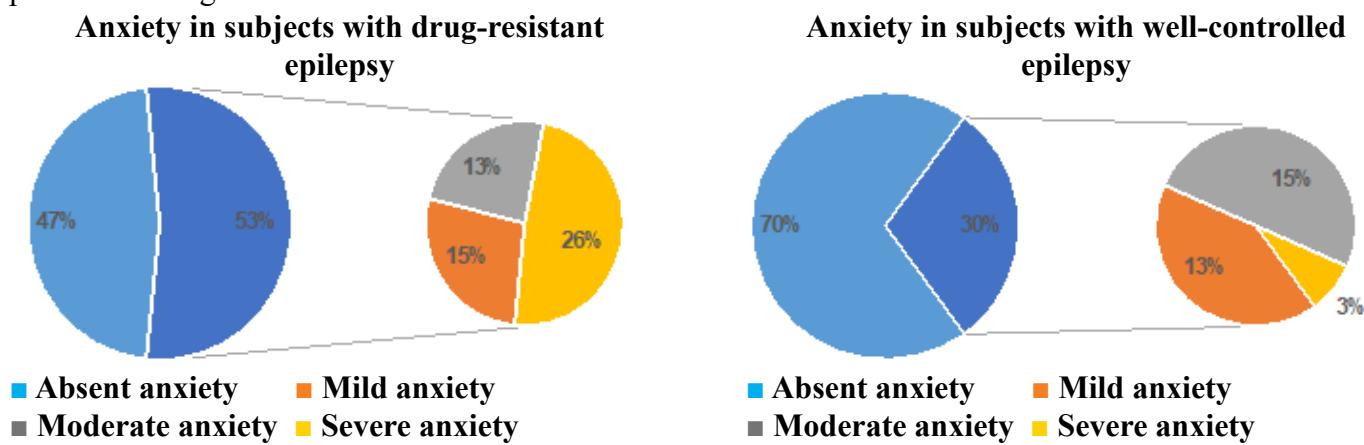
Depressive symptoms by epilepsy duration. Analysis revealed that depressive symptoms were absent among drug-resistant epilepsy patients with a disease duration of 0–9 years, whereas 27% of patients in the well-controlled epilepsy group exhibited depressive symptoms within the same timeframe. However, as the duration of epilepsy increased, the prevalence of depression rose markedly in the drug-resistant group, reaching 67% among patients aged 40–49 years. In contrast, the highest prevalence of depression in the well-controlled group was 33%, observed in patients aged 20–29 years. These findings suggest that, beginning from approximately the 10th year of epilepsy and with disease progression, depression rates increase significantly in individuals with drug-resistant epilepsy.

Depressive symptoms by epilepsy aetiology. Depression was present in 77% of drug-resistant subjects with unknown aetiology epilepsy, 56% with structural epilepsy, and only 17% with genetic epilepsy, compared to subjects with controlled epilepsy (unknown aetiology – 0%, structural epilepsy – 32%, genetic epilepsy – 33%). Thus, it can be concluded that individuals with drug-resistant epilepsy of unknown aetiology exhibit a higher susceptibility to depression. This increased vulnerability may be attributed to the uncertainty and lack of understanding surrounding the cause of the disease, which can lead to heightened psychological distress, including stress and self-blame.

Depressive symptoms by seizure frequency. We observed that as the number of epileptic seizures increases, the intensity of depressive symptoms also increases. Depression was present in 47% of drug-resistant subjects experiencing 1–10 seizures per month, 80% in those with 11–20 seizures per month, and 79% in subjects with more than 20 seizures per month. Subjects with well-controlled epilepsy experience seizures very rarely or not at all.

To date, numerous studies have confirmed that depression is the most prevalent psychiatric comorbidity in epilepsy, followed by anxiety. Approximately one-third of individuals with epilepsy experience depressive symptoms, with a particularly high prevalence among those with drug-resistant epilepsy. Reported rates of depression in this population range from 20% to 55%, while in individuals with well-controlled seizures, the prevalence is significantly lower - ranging from 3% to 9% [9].

Another notable finding emerged from our study conducted at the National Epileptology Centre (N.


Doten, 2020), which revealed that 50.5% of individuals with epilepsy exhibited symptoms of depression. This rate is substantially higher than those reported in international studies, where approximately one-third of people with epilepsy are found to experience depressive symptoms [2].

According to the study by M. G. Vaccaro et al. (2018), depression is more prevalent in individuals with drug-resistant epilepsy compared to control groups without epilepsy [13]. Gaitatzis et al. (2004) reported that the prevalence of depression in patients with drug-resistant epilepsy ranges between 60–80%, which is higher compared to those with epilepsy of unknown aetiology (20–30%) and those with chronic somatic disorders (10–20%) [5]. These findings align with our study results, which indicate that 56% of individuals with drug-resistant epilepsy suffer from depression.

Furthermore, it has been found that the presence of depression in people with drug-resistant epilepsy has a greater negative impact on quality of life than the frequency and severity of seizures themselves, and that improvements in quality of life depend more on treating comorbidities than on seizure control [12]. Concurrently, current studies have identified depression and anxiety as risk factors for drug-resistant epilepsy in newly diagnosed cases [9]. In this context, most experts agree that the suicide rate is three times higher in people with epilepsy compared to the general population [1, 6].

Results of the Hamilton anxiety rating scale (HAM-A)

According to the results of the study, anxiety symptoms were identified in 45 individuals with epilepsy (44% of the total sample). Among these, 33 participants (53%) belonged to the drug-resistant epilepsy group, while only 12 participants (30%) were from the well-controlled epilepsy group. These findings are presented in Figure 2.

Figure 2. Anxiety levels in drug-resistant vs. well-controlled epilepsy

Furthermore, anxiety levels were analysed within each group separately. In the drug-resistant epilepsy group, 53% of participants exhibited anxiety symptoms, with 15% experiencing mild anxiety, 13% moderate anxiety, and 26% severe anxiety. In contrast, the well-controlled epilepsy group demonstrated a more favourable profile: only 30% reported anxiety symptoms, including 13% with mild anxiety, 15% with moderate anxiety, and just 3% with severe anxiety. These data are illustrated in Figure 2.

According to the results obtained from the Hamilton Anxiety Rating Scale (Ham-A), the mean anxiety score among subjects with drug-resistant epilepsy ($M = 16.31$, $SD = 10.89$) was 6.08 points higher than that of subjects with well-controlled epilepsy ($M = 10.23$, $SD = 7.53$). The t-test confirmed that this difference is statistically significant ($t = 3.09$, $p = 0.003$).

Analysis of anxiety in relation to demographic and clinical factors

Anxiety symptoms by gender. Analysis revealed that 66% of women with drug-resistant epilepsy exhibited anxiety symptoms, compared to 25% of women with well-controlled epilepsy. This indicates that women in the drug-resistant group were approximately 2.6 times more likely to experience anxiety symptoms than their counterparts with controlled epilepsy. Among men, the difference was less pronounced: anxiety was present in 40% of those with drug-resistant epilepsy and 35% of those with well-controlled epilepsy, corresponding to a 1.14-fold difference. An independent samples t-test conducted on the total sample

yielded a value of $t = 2.3$ with a p -value of 0.023, indicating that women reported significantly higher levels of anxiety compared to men.

Anxiety symptoms by age. Anxiety was found to be more prevalent among young individuals with drug-resistant epilepsy, particularly those aged 18–39 years (50–61%). In contrast, the highest rate of anxiety in subjects with well-controlled epilepsy (57%) was observed in the 40–49 age group.

Anxiety symptoms by education level. It was observed that subjects with higher education levels - both those with drug-resistant epilepsy and those with well-controlled epilepsy - present the lowest prevalence of anxiety (47% for drug-resistant vs. 21% for well-controlled). Conversely, the highest anxiety rates were reported among individuals with technical education (61% for drug-resistant vs. 50% for well-controlled). When analysing the entire sample, differences in the mean anxiety scores were noted among those with secondary education ($M = 14.47$, $SD = 9.89$), technical education ($M = 18.22$, $SD = 11.49$), and higher education ($M = 12.33$, $SD = 10.00$), but these differences were not statistically significant ($t = 1.42$, $p = 0.25$).

Anxiety symptoms by marital status. Both drug-resistant and well-controlled groups exhibit the same pattern regarding anxiety symptoms. The most anxious individuals are divorced (70% in the drug-resistant group vs. 50% in the well-controlled group), followed by those who are married (52% vs. 38%, respectively), and those who are single (48% vs. 14%, respectively). Moreover, in the total sample, the mean anxiety scores differed significantly across marital status categories: married individuals ($M = 14.23$, $SD = 10.07$), divorced individuals ($M = 20.08$, $SD = 12.85$), and single individuals ($M = 11.49$, $SD = 8.45$), with the differences being statistically significant ($t = 3.49$, $p = 0.034$).

Anxiety symptoms by employment status. Anxiety is more prevalent among unemployed subjects both in the drug-resistant epilepsy group (56%) and in the well-controlled epilepsy group (50%). Analysing the total sample, significant differences were found between employed subjects ($M = 11.35$, $SD = 8.8$) and unemployed subjects ($M = 16.6$, $SD = 10.77$), with $t = 2.7$ and $p = 0.008$.

Anxiety symptoms by living environment. Among individuals with drug-resistant epilepsy, those residing in rural areas reported lower rates of anxiety (48%) compared to their urban counterparts (58%). In contrast, the well-controlled epilepsy group demonstrated the opposite trend: rural participants exhibited higher levels of anxiety (37%) than those living in urban environments (24%).

Anxiety symptoms by aetiology of epilepsy. In the drug-resistant epilepsy group, anxiety was reported in 77% of individuals with epilepsy of unknown aetiology, 51% of those with structural epilepsy, and only 17% of those with genetic epilepsy. In comparison, among individuals with well-controlled epilepsy, anxiety was present in 36% of those with structural epilepsy, 25% with unknown aetiology, and none of those with genetic epilepsy. These findings mirror the pattern observed for depressive symptoms. Consequently, it can be inferred that when the aetiology of epilepsy is unknown, individuals may experience greater psychological distress - manifested as increased anxiety and depressive symptoms - likely due to the uncertainty surrounding their condition.

Anxiety symptoms by duration of disease. Data analysis indicates that anxiety symptoms tend to increase over time in individuals with drug-resistant epilepsy, rising from 33% in those with a disease duration of 0–9 years to 60% in the 30–39 years range. In contrast, among individuals with well-controlled epilepsy, anxiety prevalence increases modestly from 20% in the 0–9 years range to 33% in the 10–19 years range, maintaining this level consistently through to the 30–39 years range. These findings suggest that, unlike in drug-resistant epilepsy, anxiety levels in well-controlled epilepsy do not significantly escalate with disease progression.

Anxiety symptoms by seizures frequency. The data indicate a direct correlation between the frequency of epileptic seizures and the presence of anxiety symptoms in individuals with drug-resistant epilepsy. Specifically, anxiety was reported in 47% of subjects experiencing 1–10 seizures per month, 60% of those with 11–20 seizures per month, and 71% of those experiencing more than 20 seizures per month. In contrast, individuals with well-controlled epilepsy experienced seizures infrequently or not at all and correspondingly exhibited lower rates of anxiety.

The findings of our study confirm that anxiety is a significant and frequent psychiatric comorbidity in individuals with epilepsy, with notable implications for their quality of life. Anxiety was predominantly

observed in individuals with drug-resistant epilepsy and was shown to increase with disease progression and seizure frequency. It was more prevalent among women and divorced individuals, whereas higher levels of education were associated with reduced anxiety. These results highlight the importance of early psychological assessment and targeted interventions, particularly for high-risk subgroups within the epilepsy population.

It is also important to highlight findings from a 2022 study conducted in the Republic of Moldova, which reported gender differences in anxiety symptoms among individuals with epilepsy. The study found that anxiety was present in 57% of women and 30% of men, with symptom severity increasing over time in both sexes as the disease progressed [3]. These results are consistent with our findings and further emphasize the need for gender-sensitive approaches to the psychological care of individuals with epilepsy.

Our study results partially align with international research; however, notable differences in prevalence were observed. Globally, the prevalence of anxiety among individuals with epilepsy ranges from 15% to 30% [9], while in our national context it exceeds 40%. A recent study conducted at the National Epileptology Centre (N. Doțen et al., 2022) further supports this trend, revealing that women with epilepsy - particularly those who are divorced or married - are nearly twice as likely to experience depression and anxiety compared to men [3]. Despite a growing body of research highlighting the significance of these psychological comorbidities in epilepsy, their recognition and treatment remain insufficiently addressed in clinical practice.

Conclusions:

The statistical findings regarding the affective dimension indicate significant differences in the prevalence and severity of depression and anxiety between individuals with drug-resistant epilepsy and those with well-controlled epilepsy. Although no statistically significant differences were found between genders overall, women with drug-resistant epilepsy were found to be 3.3 times more likely to experience depression and 2.6 times more likely to suffer from anxiety than women with well-controlled epilepsy. The most vulnerable subgroups included divorced individuals, the unemployed, those with vocational or technical education, and individuals with epilepsy of unknown aetiology. Conversely, those with higher education levels and stable employment appeared to be more resilient to affective disorders. Depression and anxiety levels were also shown to increase in parallel with disease duration and seizure frequency. These findings reinforce the conclusion that affective disorders - particularly anxiety and depression - are the most common psychiatric comorbidities in drug-resistant epilepsy. They negatively impact cognitive functioning, seizure control, treatment adherence, and overall quality of life. Considering these findings, we emphasize the critical importance of early identification and integrated treatment of anxiety and depressive symptoms, using both psychological and pharmacological interventions, to improve outcomes for people with epilepsy.

Bibliographical references:

1. CHRISTENSEN, J. et al. Epilepsy and risk of suicide: a population-based case-control study. In: *The Lancet Neurology*, 2007, 6.8: 693-698. DOI: 10.1016/S1474-4422(07)70175-8.
2. DOȚEN, N. Tulburări afective în epilepsie. In: *Studia Universitatis Moldaviae (Seria Științe ale Educației)*, 2020, 139.9: 161-165.
3. DOȚEN, N, AFTENE, D. Affective disorders according to gender and marital status in epilepsy. In: *Revista de Științe ale Sănătății din Moldova*, 2022, nr. 3 An.1(29), p. 270. ISSN 2345-1467.
4. FISHER, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. In: *Epilepsia*, 2014, 55.4: 475-482.
5. GAITATZIS, A., TRIMBLE, M. R., SANDER, J. W. The Psychiatric comorbidity of Epilepsy. In: *Acta Neurologica Scandinavica*, 110(4), 2004. 207–220. DOI:10.1111/j.1600-0404.2004.00324.x.
6. HESDORFFER, D. C. et al. Epilepsy, suicidality, and psychiatric disorders: a bidirectional association. In: *Annals of neurology*, 2012, 72.2: 184-191. doi.org/10.1002/ana.23601.
7. KANNER, A. M., RIBOT, R., MAZARATI, A. Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: Do they have an impact on the course of the seizure disorder? In: *Epilepsia Open*, 2018, 3: 210-219. DOI: 10.1002/epi4.12278.

8. KANNER, A. M. Depression in epilepsy: a neurobiologic perspective. In: *Epilepsy currents*, 2005, 5.1: 21-27. DOI: 10.1111/j.1535-7597.2005.05106.x.
9. KWON, O.-Y., PARK, S.-P. Depression and anxiety in people with epilepsy. In: *Journal of clinical neurology*, 2014, 10.3: 175-188. DOI:10.3988/jcn.2014.10.3.175.
10. LEWIS, A. Melancholia: a historical review. In: *Journal of Mental Science* 1934;80:1-42.
11. NACU, A. et al. *Depresia: protocol clinic naţional PCN-255*. Ministerul Sănătăţii al Republicii Moldova. 2016. <http://hdl.handle.net/20.500.12710/10635>.
12. TELLEZ-ZENTENO, J. F. et al. Psychiatric comorbidity in epilepsy: a population-based analysis. In: *Epilepsia*, 2007, 48.12: 2336-2344. DOI: 10.1111/j.1528-1167.2007.01222.x.
13. VACCARO, M. G. et al. Neuropsychological profile of mild temporal lobe epilepsy. In: *Epilepsy & Behavior*, 2018, 85: 222-226. DOI:10.1016/j.yebeh.2018.06.013.

Data about authors:

Natalia DOTEN, PhD in Psychology, lecturer, Department of Psychology, Faculty of Psychology, Education Sciences, Sociology and Social Work, Moldova State University, psychologist at the Institute of Emergency Medicine, National Centre of Epileptology.

ORCID: 0000-0002-6073-866X

E-mail: dotenatalia@yahoo.com

Aurelia GLAVAN, Habilitated Doctor, Professor, Neuropsychologist, National Centre of Epileptology

ORCID: 0000-0002-2549-5367

E-mail: glavan_aurelia@yahoo.com

Presented on: 13.09.2025