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Este formulată o clasă de probleme stocastice de control optimal discret ce extinde clasa problemelor deterministe 
cu un orizont de timp finit. Se propune o metodă de soluţionare a acestor probleme bazată pe metoda reţelei temporale 
extinse. 

 
 
Introduction and Problems Formulations  
We consider a time-discrete system  with a finite set of states L nX R⊂ . At every time-step  

the state of the system  is 
= 0,1,2, ,t K

L ( )x t X∈ . Two states 0x  and fx  are given in X , where 0 = (0)x x  represents 

the starting state of system  and L fx  is the state in which the system  must be brought, i.e. L fx  is the final 

state of . We assume that the system  should reach the final state L L fx  at the time-moment ( )fT x  such 

that  where  and  are given. The dynamics of the system  is described as follows  1 ( ) ,fT T x T≤ ≤ 2

,
1T 2T L

  (1) ( 1) ( ( ), ( )), 0,1,2,tx t g x t u t t+ = = K

where  
 0(0)x x=  (2) 

and  represents the vector of control parameters. For any time-step  and 

an arbitrary state 
1 2( ) ( ( ), ( ), , ( )) m

mu t u t u t u t R= K ∈ t
( )x t X∈  a feasible finite set , for the vector of control 

parameters  is given, i.e.  

1 2 ( ( ))
( ) ( ) ( )( ( )) { , , , }k x t

t x t x t xU x t u u u= K t

( )u t
 ( ) ( ( )), 0,1,2, .tu t U x t t∈ = K  (3) 
We assume that in (1) the vector functions  uniquely are determined by ( ( ), ( ))tg x t u t ( )x t  and , i.e. 

the state  is determined uniquely by 
( )u t

( 1)x t + ( )x t  and  at every time-step ( )u t 0,1,2,t = K . In addition we 
assume that at each moment of time t  the cost ( ( ), ( 1)) = ( ( ), ( ( ), ( )))t t tc x t x t c x t g x t u t+  of system's transaction 
from the state ( )x t  to the state  is known. ( 1)x t +

Let  
  0 (0), (1), (2), , ( ),x x x x x t= K K

be a trajectory generated by given vectors of control parameters  
 (0), (1), , ( 1), .u u u t −K K  
Then either this trajectory passes through the state fx  at the time-moment ( )fT x  or it does not pass 

through fx . 
We denote  

  (4) 
( ) 1

0
=0

( ( )) ( ( ), ( ( ), ( )))
T x f

x x t tf
t

F u t c x t g x t u t
−

= ∑
the integral-time cost of system's transactions from 0x  to fx  if 1 ( )fT T x T2≤ ≤ ; otherwise we put 

 
0

( ( )) = .x x f
F u t ∞

In [1, 2, 4] have been formulated and studied the following problem: to determine the vectors of control 
parameters  which satisfy conditions (1)-(3) and minimize functional (4). (0), (1), , ( ),u u u tK K
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This problem can be regarded as a control model with controllable states of dynamical system because for 
an arbitrary state ( )x t  at every moment of time the choosing of vector of control parameter  
is assumed to be at our disposition. 

( ) ( ( ))tu t U x t∈

In the following we consider the stochastic versions of the control model formulated above. We assume 
that the dynamical system  may contains uncontrollable states, i.e. for the system  there exists 
dynamical states in which we are not able to control the dynamics of the system and the vector of control 
parameters  for such states is changing in the random way according to given distribution 
function  

L L

( ) ( ( ))tu t U x t∈

  (5) 
( ( ))

( )
=1

: ( ( )) [0,1], ( ) 1
k x t

i
t

i

p U x t p u→ ∑ x t =

on the corresponding dynamical feasible sets . If an arbitrary dynamic state ( ( ))tU x t ( )x t  of system  at a 
given moment of time  we regard as position ( ,

L
t )x t  then the set of positions  

 2{( , )| , 0,1,2, , }Z x t x X t T= ∈ = K  
of dynamical system can be divided into two disjoint subsets  

 = ( =C N C NZ Z Z Z Z ),∅U I  
where CZ  represents the set of controllable positions of  and L NZ  represents the set of positions ( , ) ( )x t x t=  
for which the distribution function (5) of the vectors of control parameters ( ) ( ( ))tu t U x t∈  are given. This 
mean that the dynamical system  works as follows. If the starting point belong to controllable positions 
then the decision maker fix a vector of control parameter and we obtain the state 

L
(1)x . If the starting state 

belong to the set of uncontrollable positions then the system passes to the next state in the random way. After 
that if at the time-moment  the state 1t = (1)x  belong to the set of controllable positions then the decision 
maker fix the vector of control parameter ( ) ( ( ))tu t U x t∈  and we obtain the state (2)x . If (1)x  belong to 
the set of uncontrollable positions then the system passes to the next state in the random way and so on. In 
this dynamic process the final state may be reached at given moment of time with a probability which depend 
on the control of the system in the deterministic states as well as the expectation of integral time cost by 
trajectory depends on control of the system in these states. Therefore our main concentration will be addressed 
on studying and solving the following classes of problems. 

Problem 1. For given vectors of control parameters ( ) ( ( ))tu t U x t∈ , ( ) Cx t Z∈ , to determine the 
probability that the dynamical system  with given starting state L 0 (0)x x=  will reach the final state fx  at the 

moment of time ( )fT x  such that . This probability we denote ; 

if  then we use the notation .  
1 ( )fT T x T≤ ≤ 2 0 1 2( ( ), , ( ) )x f fP u t x T T x T≤ ≤

1 2T T T= =
0
( ( ), , )x fP u t x T

Problem 2. To find the vectors of control parameters , *( ) ( ( ))tu t U x t∈ ( ) Cx t Z∈  for which the probability 

in Problem 1 is maximal. This probability we denote ; in the case 
0

*
1( ( ), , ( ) )x f fP u t x T T x T≤ ≤ 2 1 2T T T= =  

we shall use the notation .  
0

*( ( ), , )x fP u t x T

Problem 3. For given vectors of control parameters ( ) ( ( ))tu t U x t∈ , ( ) Cx t Z∈  and given number of 
stages T  to determine the expectation of integral-time cost of the system after T  transactions when it starts 
transactions in the state 0 (0)x x=  at the moment of time 0t = . This expectation we denote 

0
( ( ), )xExp u t T . 

Problem 4. To determine the vectors of control parameters , *( ) ( ( ))tu t U x t∈ ( ) Cx t Z∈  for which the 
expectation of integral-time cost for dynamical system in Problem 3 is minimal. This expectation we denote 

. 
0

*( ( ), , )x fExp u t x T
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Problem 5. For given vectors of control parameters ( ) ( ( ))tu t U x t∈ , ( ) Cx t Z∈ , to determine the 
expectation of integral-time cost of system's transactions from starting state 0x  to final state fx  when the 

final state is reached at the time-moment ( )fT x  such that 1 ( )fT T x T2≤ ≤ . This expectation we denote 

0 1( ( ), , ( ) )x f f 2Exp u t x T T x T≤ ≤ ; in the case 1 2T T T= =  this expectation we denote 
0
( ( ), , )x fExp u t x T . 

Problem 6. To determine the vectors of control parameters , *( ) ( ( ))tu t U x t∈ ( ) Cx t Z∈  for which the 
expectation of integral-time cost of system's transactions in Problem 5 is minimal. This expectation we denote 

; in the case 
0

*
1( ( ), , ( ) )x f fExp u t x T T x T≤ ≤ 2 1 2T T T= =  this expectation we denote . 

0

*( ( ), , )x fExp u t x T
For an additional characterization of the finite stochastic processes we introduce also the notion of the variance 

of integral-time cost for the dynamical system and the corresponding problem of determining the variance in 
such processes will be considered. Note that in these problems the probability , 

the expectation 
0 1 2( ( ), , ( ) )x f fP u t x T T x T≤ ≤

0 1( ( ), , ( ) )x f f 2Exp u t x T T x T≤ ≤  as well the variance need to be specified and more strictly 
defined. These notions we define in accordance with the basic notions of decision Markov processes and 
control theory. This will allow us to formulate more accurate our problems and to solve them in general form. 

The considered problems comprises a large class of deterministic and stochastic dynamic problems from 
[1, 2, 3]. The problems from [3] related to finite Markov processes became Problems 1-3 in the case when 

,  and when the probabilities CZ =∅ 1 2T T T= = ( )( i )x tp u  do not depend on time but depend only on the 

states. The discrete optimal control problems from [1, 2] became Problems 4-6 in the case . In the 
following we propose algorithms for solving the problem formulated above based on results from [1, 2, 3] 
and time-expended method from [4, 5]. 

NZ =∅

The problems formulated above can be studied and solved separately, however the combined joint solution 
of some of them also may be asked and justified. For example, if we solve Problem 2 and find the control 
with the maximal probability of system transactions from the starting state to the final one then after that it 
has reason for the optimal control found to estimate the expected integral time cost of states transactions for 
the dynamical system , i.e. we have to solve additionally Problem 5. If we solve Problem 6 and find the 
control which provide the maximal expectation of integral time cost of states transactions of the system from 

0x  to fx  then after that it has sense for such optimal control to estimate the probability of system passage 

from 0x  to fx , i.e. we have to solve additionally Problem 1. So, such combined solution of the problems 
formulated above may be useful for practical point of view. 

2. Definitions of the Basic Notions for Stochastic Discrete Control Problems 
We have already noted that for studying and solving our problems it is necessary to define strictly the state 

probabilities and the expectation of integral-time cost. Below we specify and define these notions for Problems 
1-6 in accordance with the basic notions from [3]. 

2.1. Definition of the State Probability and The Expectation of Integral-Time Cost 
In this subsection we specify the notions of state probabilities ,  

and the expectations of integral-time cost , ,  
for dynamical system mentioned in our problems using the definitions of state probabilities and the expectation 
of integral-time cost from previous chapters. First of all we stress our attention to the definition of the 
probability  for the dynamical system . For given starting state 

(0)( ( ), , )xP u t x T (0) 1 2( ( ), , ( ) )x f fP u t x T T x T≤ ≤

(0) ( ( ), )xC u t T (0) ( ( ), , )x fC u t x T (0) 1 2( ( ), , ( ) )x f fC u t x T T x T≤ ≤

0
( ( ), , )

ixP u t x T L
0i

x , given time-moment T  

and fixed control  we define this probability in the following way. We consider that a transaction of the 
system from an arbitrary controllable state 

( )u t
( )x x t=  to the next state ( 1)y x t= +  generated by the control 

 is made with probability  and the rest of probabilities of system's transactions from ( )u t , 1x yp = x  at the 
moment of time  to the next states are equal to zero. Thus we obtain a finite Markov process for which the t
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probability of system passage from starting state 
0i

x  to final state x  by using T  unites of time can be defined. 

This probability we denote . The probability 
0
( ( ), , )

ixP u t x T
0

1( ( ), , ( ) )
ixP u t x 2T x TT ≤ ≤  for given  and 

 we define as probability of the dynamical system  to reach the state 

1T

2T L x  at least at the one of the moment 

of times . 1 1 2, 1, ,T T T+ K

In order to define strictly the expectation of integral-time cost of dynamical system in Problems 3-6 we shall 
use the notion of expectation of integral-time cost for Markov processes with costs on transactions introduced 
in previous subsection. The expectation of integral-time cost  of system  in Problem 3 for 

fixed control  we define as the expectation of the integral-time cost during T  transitions of dynamical 
system in the Markov process generated by the control  and the the corresponding costs of state's transactions 
of dynamical system.  

0
( ( ), )

ixC u t T L

( )u t
( )u t

In the following we shall use the random graph with given probability function :p ER R→  on edge set 
 and given distinguished vertices which correspond to starting and final states of the dynamical system. 

To the edges we will associate also the costs which correspond to the cost of system passage from one state 
to another. Such random graph we call stochastic network. Further the stochastic networks we will extend for 
the non-stationary Markov processes and will use for calculation of the probabilities  

and the expectations 

ER

0
1 2( , ( ) )

ixP x T T x T≤ ≤

0
( , )

ixExp x T , 
0

1 2( , ( ) )
ixExp x T T x T≤ ≤ . 

3. The Main Approach and Algorithms for Determining the State Probabilities of the System in the 
Control Problems on Stochastic Networks 

In order to provide a better understanding of the main approach and to ground the algorithms for solving 
the problems formulated in Section 1 we shall use the network representation of the dynamics of the system 
and will formulate these problems on stochastic network. Note that in our control problems the probabilities 
and the costs of system's passage from one state to another depend on time. Therefore here we develop the 
time-expended network method from [4, 5] for the stochastic versions of control problems and reduce them 
to the static case of the problems. This will allow us to describe dynamic programming algorithms for 
solving the problems on static stochastic networks. At first we show how to construct the stochastic network 
and how to solve the problems with fixed number of stages, i.e. we consider the case . 1 2T T T= =

3.1. Construction of the Stochastic Time-Expended Network with Fixed Number of Transactions 
If the dynamics of discrete system  and the information related to the feasible sets  and the cost 

functions  in the problems with 
L ( ( ))tU x t

( ( ), ( ( ), ( )))t tc x t g x t u t 1 2T T T= =  are known then our stochastic network 
can be obtained in the following way. Each position ( , )x t  which correspond to a dynamic state ( )x t  we 
identify with a vertex ( , )z x t=  of the network. So, the set of vertices Z  of the network can be represented 
as follows 

 1 2 TZ Z Z Z= U UKU , 
where 

 {( , )| }, 0,1,2, , .tZ x t x X t T= ∈ = K  
To each vector of control parameters ( ) ( ( )), 1,2, , 1tu t U x t t T∈ = K −  which provide a system passage 

from the state ( ) ( , )x t x t=  to the state ( 1) ( , 1)x t y t+ = +  we associate in our network a directed edge 
 from the vertex ( , ) (( , ), ( , 1))e z w x t y t= + ( , )z x t=  to the vertex ( , 1)w y t= + , i.e., the set of edges E  of the 

network is determined by the feasible sets . After that to each directed edge  

originating in the uncontrollable positions ( ,
( ( ))tU x t ( , ) (( , ),( , 1))e z w x t y t= = +

)x t  we put in correspondence the probability  

where  is a vector of control parameter which provide the passage of the system from the state 

( ( )),i
ep p u t=

( )iu t ( )x x t=  to 
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the state . Thus if we distinguish in  the subset of edges ( 1) ( , 1)x t y t+ = + E { ( , ) | }N
NE e z w E z Z= = ∈ ∈  

originating in uncontrollable positions NZ  then on NE  we obtain the probability function :p E R→  which 
satisfy the condition 

 
( )

1, \N
e T

e E z

p z Z Z
+∈

= ∈∑  

where ( )E z+  is the set of edges originating in , i.e. z ( ) { ( , ) | , }E z e z w e E w Z+ = = ∈ ∈ . In addition in the 
network we add to the edges  the costs ( , ) (( , ),( , 1))e z w x t y t= = + ( , ) (( , ), ( , 1)) ( ( ), ( 1))z w tc c x t y t c x t x t= + = +  

which correspond to the costs of system's passage from states ( )x t  to the states . The subset of edges 
of the graph  originating in vertices 

( 1)x t +
G Cz Z∈  we denote CE , i.e. = \C NE E E . 

So, our network is determined by the tuple , where  is the graph 

which describe the dynamics of the system; the vertices 
0( , , , , , , , )C N

fG Z Z z z c p T ( , )G Z E=

0 0
( ,0)iz x=  and ( ,0)f fz x=  correspond to the starting 

and the final states of the dynamical system, respectively;  represents the cost function defined on the set of 
edges  and 

c
E p  is the probability function defined on the set of edges NE  which satisfy condition (5). Note 

that = C NZ Z ZU , where CZ  is a subset of vertices of G  which correspond to the set of controllable positions 
of dynamical system and NZ  is a subset of vertices of G  which correspond to the set of uncontrollable positions 
of system . In addition we shall use the notation L C

tZ  and N
tZ , where {( , ) | ( , ) }C C

t tZ x t Z x t Z= ∈ ∈  and 

{( , ) |N
t tZ x t Z= ∈  ( , ) }Cx t Z∈ . 
The notation of stochastic network for different problems in the following may be specified. As example, 

for Problems 1 and 2 the information about the cost function  is not required, therefore this function in the 
notation of the network we will omit; for Problems 3, 4 the final state is not given and therefore in the notation 
of the stochastic network we will not use it. 

c

It is easy to observe that after the construction described above the Problem 1 in the case  can be 

formulated and solved on stochastic network . A control  of system  in this 

network means a fixing a passage from each controllable position 

1 2T T T= =

0( , , , , , , )C N
fG Z Z z z p T ( )u t L

= ( , )z x t  to the next position = ( , )z x t  
through a leaving edge = ( , ) = (( , ), ( , 1))e z w x t y t +  generated by ; this is equivalent with an association to 
these leaving edges the probability  of the system's passage from the state 

( )u t
1ep = ( , )x t  to the state ( , 1)y t +  

considering  for the rest of leaving edges. In other words a control on stochastic network means an 
extension of the probability function 

0ep =
p  from NE  to E  by adding to the edges  the probabilities \ Ne E E∈

ep  according to the mentioned above rule. We denote this probability function on  by E up  and will keep in 

mind that  for  and on u
ep p= e \ Ne E E∈ CE  this function satisfy the following property 

 
( )

: {0,1}, = 1u u
C e

e E zC

p E p
+∈

→ ∑  for Cz Z∈ , 

induced by the feasible control  in the problems from Section 1. In general we can start with the definition 
of the control on stochastic network as a map 

( )u t

  : {0,1}u
Cp E →

which satisfy the condition  for 
( )

1u
e

e E zC

p
+∈

=∑ \{ }fz Z z∈  and then to show that this map uniquely determine 

a feasible control  for the problems from Section 1. So, each feasible control  uniquely define the 

function 

( )pu t ( )u t

ep  on  and vice versa, i.e. each probability function E up  on CE  uniquely determine a feasible 
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control  for the Problems 1-6. Therefore if the control  is given then the stochastic network we denote 

. If the control  in the Problems 1-6 is not fixed then for the stochastic network 

we shall use the notation . For the state probabilities of the system  on this 

stochastic network we shall use a similarly notations  and each 

time we will specify on which network they are calculated, i.e. will take into account that these probabilities 
are calculated by using the probability function on edges 

( )pu t ( )u t

0( , , , , , , , )C N u
fG Z Z z z c p T ( )u t

0( , , , , , , , )C N
fG Z Z z z c p T L

10 0
( ( ), , ), ( ( ), , ( ) )z zP u t z T P u t z T T z T≤ ≤ 2

up  which already do not depend on time. 
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