CzU:519.832 DOT: http://doi.org/10.5281/zenodo.5094574

PARALLEL ALGORITHM TO SOLVING 2D BLOCK-CYCLIC PARTITIONED
BIMATRIX GAMES

Boris HANCU, Emil CATARANCIUC
Moldova State University

The article presents a theoretical and practical study of the ways of determining solutions in bima-
trix games divided into blocks of submatrices using 2D block-cyclic matrix dividing and distribution
algorithm. The proved theorems represent the foundation on which the bimatrix game solution can
be built using the sub-games solutions generated by the 2D-cyclic matrix distribution algorithm.

Keywords: non cooperative game, Nash equilibrium, parallel algorithms, distributed memory clusters.

ALGORITM PARALEL PENTRU REZOLVAREA JOCURILOR BIMATRICEALE PAR-
TITIONATE CICLIC IN BLOCURI 2D

Articolul prezintd un studiu teoretic i practic al modalititilor de determinare a solutiilor in jocurile
bimatriceale impartite in blocuri de submatrice utilizand algoritmul 2D-ciclic de divizare i distribuire
a matricelor. Teoremele demonstrate reprezintd baza pe care solutia jocului bimatriceal poate fi
construitd folosind solutiile subjocurilor generate de algoritmul de distribuire a matricei ciclice 2D.

Cuvinte-cheie: joc noncooperatist, echilibru Nash, algoritmi paraleli, clustere cu memorie distribuite.

1 Introduction

Contemporary decision-making problems are very complex and require the processing of a very large
volume of data. Thus, for the mathematical modelling of these processes, it is necessary to take into
account the big data problems. Big data is huge amount of data which is beyond the processing
capacity to manage and analyse the data in a specific time interval. The data is too big to be stored
and processed by a single machine. In many large-scale solutions, data is divided into partitions
that can be managed and accessed separately. In order to solve such problems in real time, parallel
algorithms are built, and then implemented on various types of parallel computing systems. For
parallel data processing we must use the ways of dividing, partitioning (sharing) and distributing
data. Data partitioning is a technique for physically dividing the data during the loading of the Master
Data. Using this method we are going to split the data into smaller pieces according to the rules set
by the user. In a distributed-memory parallel systems, load balance is the essential motivation for
distributing the data over a collection of processes according to the block-cyclic decomposition scheme
[1]. As noted in [2] the two-dimensional block-cyclic distribution has been suggested as a possible
general purpose basic decomposition for parallel dense linear algebra software libraries. In [3] there are
presented important properties of the two-dimensional block-cyclic data distribution that are the basis
of efficient algorithms for address generation, fast indexing techniques and communication scheduling.
At the basis of data level parallelisation for BLAS it is the 2D block-cyclic distribution algorithm
[4]. For solving systems of simultaneous linear equations, least-squares solutions of linear systems of
equations, eigenvalue problems and singular value problems it is used in the same way the 2D block-
cyclic distribution algorithm [5]. The ScaLAPACK (or Scalable LAPACK) library includes a subset of
LAPACK routines redesigned for distributed memory MIMD parallel computers assumes that matrices
are laid out in a two-dimensional block cyclic decomposition[6-7]. The problem of partitioning a matrix

26

into a set of submatrices has received increased attention in the last few years [8]. This operation
is indeed crucial when considering dense linear algebra kernels and other applications with similar
communication patterns on heterogeneous platforms.

At the moment, in the opinion of the authors, there are no algorithms that use the partitioning
of matrices based on the 2D block-cyclic distribution algorithm for solving bimatrix games with very
large matrices. In this article the authors make an attempt to complete this gap.

In section 2 of the article, the way of dividing and distributing the matrices on the one-dimensional
linear array of processes, based on the 2D block-cyclic partitioned algorithm, is analysed in detail.
There are demonstrated some properties of this algorithm that later are used to determine solutions
in bimatrix games.

In sections 3 the following problem is studied and solved: if we divide and distribute the matrices
of the bimatrix game using the 2D block-cyclic partitioned algorithm, and using a parallel algorithm
is determined the equilibrium profiles in the subgames generated by the distribution algorithm, then
which of these equilibrium profiles can be considered equilibrium profiles in the initial problem.

2 Process grid and block-cyclic distribution of matrices

The basic parallel strategy consists of three main steps. The first step is to partition the input
into several partitions of almost equal sizes. The second step is to solve recursively the subproblem
defined by each partition of the input. Note that these subproblems can be solved concurrently in the
parallel system. The third step is to combine or merge the solutions of the different subproblems
into a solution for the overall problem. The success of such a strategy depends on whether or not we
can perform the fist and third steps efficiently [9]. To realise the first step of the parallel strategy, that
is to realise data parallelisation, we use the two-dimensional block-cyclic data layout scheme
(10].

The P processes of an abstract parallel computer are often represented as a one-dimensional linear
array of processes labelled 0, 1,..., P. It is often more convenient to map this one-dimensional array
of processes into a two-dimensional rectangular grid, or process grid by using row-major order (the
numbering of the processes increases sequentially across each row) or by using column-major order (the
numbering of the processes proceeds down each column of the process grid). This grid will have [pax
process rows and cpax process columns, where lmax + ¢max = P. The process can now be referenced
by its row and column coordinates, (I,c), within the grid L x C where L = {1,..,1, ..., lnax } is & set of
row numbers and C' = {1, .., ¢, ..., Cmax} i & set of column numbers. These groupings of processes are
of particular interest to the programmer, since distributed data decomposition of a matrix tends to
follow this process mapping. Viewing the rows/columns of the process grid as essentially autonomous
subsystems provides the programmer with additional levels of parallelism.

In ScalLAPACK, and thus in BLACS, each process grid is enclosed in a context. Similarly, a context
Is associated with every global matrix in ScaLAPACK. The use of a context provides the ability to have
separate "universes” of message passing. This means that a process grid can safely communicate even
if other process grids are also communicating. Thus, a context is a powerful mechanism for avoiding
unintentional nondeterminism in message passing and provides support for the design of safe, modular
software libraries. In MPI this concept is referred to as a communicator.

A context partitions the communication space. A message sent from one context cannot be received
in another context. The use of separate communication contexts by distinct libraries (or distinct library
routine invocations) insulates the internal communication of a specific library routine from external
communication that may be going on within the user’s program. In most respects, we can use the
terms process grid and context interchangeably. So, context allows us to do the following:

s create arbitrary groups of processes,

27

e create an indeterminate number of overlapping and/or disjoint process grids,

e isolate the process grids so that they do not interfere with each other.

The choice of an appropriate data distribution heavily depends on the characteristics of flow of the
computation in the algorithm. For dense matrix computations we assume the data to be distributed
according to the two-dimensional block-cyclic data layout scheme. The block-cyclic data layout has
been selected for the dense algorithms implemented in DMM parallel systems principally because of
its scalability, load balance and efficient use of computation routines (data locality).

The block-partitioned computations are processed in consecutive order just like a conventional ser-
ial algorithm. Procedure steps of the 2D block-cyclic matrix dividing and distribution (2DBCMD&D)
algorithm are the following:

e Divide up the global array into blocks with m_ A rows and n_ A columns.

e Irom now on, think of the global array as composed only of these blocks.

Distribute first row of array blocks across the first row of the processor grid in order. If you run
out processor grid columns cycle back to first column.

e Repeat for the second row of array blocks, with the second row of the processor grid.

Continue for remaining rows of array blocks.

If you run out of processor grid rows, cycle back to the first processor row and repeat.

According to the two dimensional block cyclic data distribution scheme, an m by n dense matrix
is first decomposed into m_ A by n__ A blocks starting at its upper left corner. These blocks are then
uniformly distributed in each dimension of the Process Grid. Thus, every process owns a collection
of blocks, which are locally and contiguously stored in a two-dimensional column major array. We
present below the program fragment in C ++ with the use of BLACS functions for implementation of
the 2DBCMD&D algorithm.

Block which contains Cblacs declarations

extern"C"{ void Cblacs_gridexit(int);
void Cblacs_pinfo(int*,int*); void Cblacs_exit(int);

void Cblacs_get(int,int,int*); int numroc_(int*,int*,intx*,
void Cblacs_gridinit(int*,const int*,int*);

char*,int,int); int indx12g_(int*,int*,intx*,
void Cblacs_gridinfo(int,intx*, int*,int*); ¥

int*,int*,intx*);

The main program must contain the following blocks:
¢ building the communication environment:

Cblacs_pinfo(&iam,&nprocs); nprow,npcol);
Cblacs_get(-1,0,&ictxt); Cblacs_gridinfo(ictxt,&nprow,
Cblacs_gridinit (&ictxt,"Row", 4npcol, &myrow,&mycol) ;

e generating the sub-matrices, here A, B are the local matrices, AA, BB are the global matrices:

28

int m_loc=numroc_(&m,&mb,&myrow,

&rsrc,&nprow) ;

int k_loc=numroc_(&k,&nb,&mycol,

&rsrc,&npcol) ;

double *A=(double*)malloc
(m_loc*k_loc*sizeof (double));
double *B=(double*)malloc
(m_loc*k_loc*sizeof (double));
for(iloc=0;iloc<m_loc;iloc++)

for(jloc=0;jloc<k_loc;jloc++){
int fortidl=iloc+1;

int fortjdl=jloc+l;
i=indx12g_(&fortidl,&mb,
&myrow,&ZERO, &nprow)-1;
j=indx12g_(&fortjdl,&nb,
&mycol,&ZERO,&npcol)-1;
Aljlock*m_loc+iloc]=* (AA+m*j+1i);
Bljloc*m_loc+iloc]=*(BB+m*j+i); }

We present below some examples of the distributed matrix based on 2DBCMD&D algorithm.
If we have a global 6 x 5 matrix A = Haullf:f—’g then for 2-D process grid L x ¢ = 2 x 2 and block
dimension 2 x 2 we obtain the division and distribution on the process grid represented below. Here
A(,c) represents the submatrix which will be distributed later to the process (I, ¢).

c=0 c=1
a11 a1z ais a13 Q14
az1 Q22 ags azz a24
=01 A = A =
©.0) as1 as2 ass 0,1) as3 as4
agr a62 ags a3 464
l=1]| Ao = agy agz2 ass Ay = azz as4
(1,0) Q41 Q42 Qa45 (1) a43 Q44
Table 1

If we have a global 6 x 5 matrix 4 = Hawllf__z_lz’.g then for 2-D process grid L x C' = 2 x 2 and block
dimension 2 x 5 we obtain the division and distribution on the process grid represented below.

c=10 c=1
air a2 a4 ais
a a a a
=0 A(o 0 = 21 G2 G4 425 non.
' asi Gas2 Qas4 Aas5
agl1 462 Aaga Aps
a a a a,
[=1 A(1 0 = 31 432 a3q4 ass non
’ a41 Q42 Q44 Qg5
Table 2

And finally, if we have a global 6 x 5 matrix A = ||a7joZ=11—T65 then for 2-D process grid Lx C =2 x 2
and block dimension 6 x 2 we obtain the division and distribution on the process grid represented

below.

c= 0 C =

ajl a1z ais a13 Qa4

a1 Qg2 ags Q23 a4

. a3l Qg2 ass 33 Qs34

L=01 Apo = A =

a41 G422 Q45 a43 Q44

asy a2 ass as3 as4

a1 a62 465 a3 ae4
=1 non non

Table 3

29

Let I(;c) (respectively J()) denotes the rows (respectively columns) of the local matrices. For
example, if the matrices are distributed as shown in Table 1 then gy = {1,2,3,4} (respectively
columns Jigg) = {1,2,3}) when the lines of the global matrix are {1,2,5,6}(respectively columns

j(l,c)=17l‘]([,c)| J'(z,c)=1,3'](t,c)|

b

submatrices

{1,2,5}). Denote by A = l

and B(c,l) =

i) d(1,0) 1,0y 3 (1,0)

Y= Ia,e iea={11,q)]

formed from global matrices A and B, t(ha)t a1|“e d)i|stributed to the (¢,!) € L x C' process grid and
by iqe) € I, respectively jq o € Ji), number of the line (column) in the matrices Ay and
By which was distributed to the process (I,c). We call () and jq) local indices of the local
elements of the local matrices Ay, B(cy). We introduce the following applications which determine
the correspondence between the "local indices" of the elements of the local matrices A), B and
the "global indices" of the elements of the global matrices A and B, specifically Ve Lue — 1
Vet Je — J- Obviously, these functions must verify the following conditions:

Vi € I,3= 7maxa de = Rmax, Hi(l,c) € I(Z,c) that i = Plle) (i(l,c)) , (2.1)

Vi e J,dl=1, lmax) Je= T;Emax) EIj(l,c) € J(l,c) that j = w(l,c) (7(/,(,)) .

Moreover, according to (2.1) the following condition is verified: for any strategy profile in the bimatrix
games, namely (2, j) € I x J, there exist a process (l,c) € L x C and the strategy profile (i(c),(.))
so that ¢ = @ g (i) and § = (g (iue)-

As aresult, we analyse only those divisions and distributions of the global matrices in local matrices
for which there exist the applications ¢(; . and 9 .y such that the conditions (2.1) are satisfied. It’s
obvious that the matrix division based on the 2DBCMD&D algorithm verifies the (2.1) properties.
These functions are similar to the INDXL2G ones in the BLACS system [10] that computes the global
row index or column index of a distributed matrix entry pointed to by the local index.

It’s easy to prove that for 2DBCMD&D algorithm the ®(,) and P oy functions, additionally to
the (2.1) conditions also verify the following conditions.

Proposition 2.1 For the 2DBCMDED algorithm the e Lue) = 1 Y - Jue — J functions
verify the following conditions:

a) Forall fized 1= 1,11y, we have o5 (iu5) = euz (i) for all ©=T, G, 0 =1, Cay , C# €
and i(l)a = i(l,'c")~

b) For all fized ¢ = 1, ¢y, we have i) (j(Z,c)) =Yy (j(T,c)> for all 1 = Tl paed = 1, 1oy
l % l and j(z,C) = J(ZC)‘

Condition a) means the following: processes which are located on the same line of the process
grid (for example line I) in its submatrices contain elements of the same line of the global matrix. In
other words, for all submatrices from a processing grid line, all the processes of a given line of the
submatrices belong to the same line of the global matrix. For example, according to Table 1, for all
processes on the [= 0 line, all elements from the 3d line of the submatrix belong to the 5th line of
the global matrix. It means that for i) = i(0,1) = 3 we have p(g (i(o’c)) = 5 for any ¢ = 0, 1.
Respectively, condition b) means the following: the processes which are located on the same column
of the process grid (for example column ¢) in its submatrices, contain elements of the same column
of the global matrix. For example, according to Table 1, for all processes on the ¢ = 0 column, all
elements from the 3d column of the submatrix belong to the 5th column of the global matrix. Meaning
that for jio,0) = J1,0) = 3 we will have Y,0) (j(z,o)) = § for any [= 0,1. This property is used to
construct the equilibrium profiles in the bimatrix games.

30

3 Nash equilibrium profiles for bimatrix games with block-cyclic
distributed matrices

We consider the bimatrix game in the following strategic form

F=<17J7A)B>’ (31)
where I = {1,2,..,n} is the line index set (the set of strategies of the player 1), J = {1,2,..,m} is
the column index set (the set of strategies of the player 2) and A = ||aij||z€eIJ, B = ||bw||ZEEIJ are the

payoff matrices of player 1 and player 2, respectively. All players know exactly the payoff matrices
and the sets of strategies. So, the game is incomplete and has imperfect information. Players intent
to maximize their payoffs. The matrices A and B are called global matrices. We denote by NE[T
the set of all equilibrium profiles in the game I". Thus, Nash equilibrium profile is the pair of indices
(7%, 7*), for which the following system of inequalities is verified

Qe i« > agjr Vi € I,

(i*, j*) € NE[I] & { birje > binj Vj € J.

Based on this definition, it is easy to develop the following algorithm for determining the Nash
equilibrium profiles in bimatrix games.

Algorithm 3.1
1. For any fixed column j € J, ¢*(j) = Arg max a;; is determined!. Under algorithmic aspect it
1€

can be as follows: for any column j of the matrix A all maximum elements of this column are

highlighted.
2. For any fixed row ¢ € I, j*(i) = Arg max b;; is determined. Under algorithmic aspect it can be
JE)

as follows: for any row i of the matrix B all maximum elements on this row are highlighted.

3. The function graph of the application i* from step 1) is built: gr _* = {(4,7) : ¢ =4*(j),Vj € J}
and of the application j* from step 2) is built as well: gr j* == {(¢,7) : j = j*(i),Véi € I'}. The
equilibrium profiles are all the profiles belonging to the intersection of the two given function
graphs: NE = gr_*Ngr_j* From an algorithmic point of view it can be done as follows: we
look for all highlighted elements in the matrices A and B and the indices of the elements whose
positions coincide both in matrix A and in matrix B will be the equilibrium profiles.

We assume that global matrices A and B are divided into submatrices and are distributed to the
processes from the process grid (communication environment, context, communicator). So we obtain
the series of bimatrix subgames in complete and perfect information in the following strategic form:

Fien = oty ety Aoty Blen) (3-2)
Example 3.1 Consider bimatriz game (A, B) = ||(as, bi,j||Z:11_-§ and suppose that the matrices A and

B are distributed according to the two-dimensional block-cyclic data layout scheme. Let’s build the
array of matriz subgames gemerated by this method of division and distribution of the matrices.

Solution. As shown above (see Table 1) according to 2DBCMD&D algorithm with 2 x 2 blocks

i . . .
The notation Argmaz means that all maximum elements are determined.

31

(a1,,b11) (a12,b12) (013, b13)
(A Big) = (a21,b21) (a22,b22) (a3, ba3) | _
(0.0): =(0.0) (az1,b31) (a32,b32) (a3, bs3)
(ag1,ba1) (a42,b42) (643, b43)
(a11,b11) (a12,b12) (ais,b15)
_ (a21,b21) (a22,b22) (azs,b2s)
(as1,b51) (aso,bs2) (ass,bss)
(as1,b61) (ac2,be2) (ass, bes)
(a11,b11) (a12,b12) (a13,b13) (a14,b14)
(A Bon) = (a21,b21) (ag2,b22) | _ | (a23,b23) (a24,b24) ||
(@1 0.1 (a31,b31) (age, bsg) (as3,b53) (as4,bs4) |’
(a41,541) (042, b42) (ag3,b63) (as4,be4)
bi1) (a12,b12) (a13,b13)
A B _((aw,bu : _
(A0, Bao) <(a21,b21) (ag, ba2) (azs, bas)
_ < (a31,b31) (asz2,bs2) (ass,bss) > _
(a41,b41) (aa2,b42) (ags,bss)

(A1) Bay) = ((a11,b11) (@12, b12) > _ < (ass, bsz) (ag4,bss))
(1,1), B1,1) (ag1,bo1) (agg, boz) (@43, ba3) (aaa,baa)

So, we obtain the following array of normal forms of bimatrix games:
L0 = (oo = {1,2,3,4}, Joo) = {1,2,3}, A00) Bo,g) ;

To,1) = (T0.0) = {1, 2}, Jo,1) = {1,2,3,4}, A0,1), Bo,1)) 5

Loy = (Lo =1{1,2,3}, Ja0 = {1,2}, Aa,0), (1,0));

, (-7(1,1 =1{1,2}, Ja,y ={L 2}, Aqn, Bay) -

We denote by NE [['(cy] or NE [(A(,)Bi))] the set of all Nash equilibrium profiles of the bi-
matrix game (subgame) 'y = <I(c,l)> Jety Aeyl)s B(c,l)> . Based on the above mentioned, and namely
according to basic parallel strategies, we can proceed to distribution on a parallel computing sys-
tem the subproblems, which in our case consist in: determining the sets NE [I“(C,l)] for any cal-
culation process (l,¢) € L x C. Based on definition of the Nash equilibrium profiles, any process
(l,¢) € L x C of a parallel computing system with the distributed memory, simultaneously and in-

dependently determines the equilibrium profiles, (z’(*l oy jz‘l C)> €ENE [(A(I,C)B(l,c))] for each subgame
Ly = <I(c,l)a Jieays Ay B(c,l)> based on the following algorithm.

Algorithm 3.2

1. For any column jg) € Jy,o), iz‘l c)(j(l,c)) Arg majx Gig e 18 determined. Under the
’ o€l

algorithmic aspect, it can be as follows: for any column J(i,e) of the local matrix A all
maximal elements on this column are highlighted.

2. For any row i(; o) € I), ja’c) (i) = Arg](l r;lea}z)bi(z,c)j(z,c) is determined. Under the algorith-
mic aspect, it can be as follows: for any row i(;) of the local matrix B(;) all maximal elements
on this row are highlighted.

32

3. The graph of the application iZ‘l 0 (+) is buils, i.e.

gr_ife = {(i(l,c)7j(l,c)) e = 0 Uee) Yige € '](l,c)}

and the graph of the application j(*l 0 (+) is built as well, i.e.

9r_Je) = {(i(z,c),j(z,c)) L e = J(ie) (i,0)) » Yige) € I(l,c)}'

4. The equilibrium profiles are all the profiles belonging to the intersection of these graphs:
NE [I‘(C)l)] = QT_iEz,c) Ngr_Jji o Expressed as an algorithm: in the local matrices A(l,c) 'and
B,y we check for all the highlighted elements and the indices of the elements whose positions
coincide both in the matrix A and in the matrix B() will be the equilibrium profiles.

Let’s analyse the following problem. Consider (i’&’c),ja’c)) €eNE [(A(l,c)B(l,c))] , 80, we have one
equilibrium profile in the game I'.;), and thus, we have the array of equilibrium profiles
{(i*l VI)} and we shall determine what relations there exist between these equilibrium
(,C) (:c) (l,C)ELXC

profiles and the equilibrium profile (¢*, 7*) € NE[[']? That is to say, if in parallel the Nash equilibrium
profile (iZ‘l’c),ja’CO eNE [(A(l,c)B(l,c))] was determined based on the Algorithm 3.2, then how can one
construct the equilibrium profile (¢*, 7*) € NE[['] without further solving some optimization problems.
It is clear that the solution of the stated problem will depend on the division and matrix distribution
algorithm. So, the general problem is: what properties must the division and matrix distribution
algorithm possess so that having the solutions of the subgames we can build (without solving some
optimization problems) solutions of problems with initial matrices.

Here we are going to analyse the following particular problem: if we divide and distribute the matri-

ces usimg the 2DBCMDED algorithm, which equilibrium profiles from the set {(i?l, o) ja C)) }(l JeLxC

can be considered as equilibrium profiles in the initial problem i.e. which of them belong to the N E[I]
set. In other words, if a given process with the coordinates ([,c) determined using the Algorithm

3.2 (iz‘m),ja’c)) € NE [(A(l,c)>B(l,c))] , then which conditions should be checked so that the given
equilibrium profile of subgame to be an equilibrium profile for the initial game too (with the global

matrices), namely (‘P(l,c) (ﬁl,c)) yP(e) (j(*l,c)>> € NE[T.
Using Proposition 2.1 for the 2DBCMD&D algorithm we can easily prove the following

Proposition 3.3 Let (3*,5*) € NE[T] in the problem (3.1) and there are a process (1, c) applications
e lo = T Y : Jag — J for which (2.1) is verified and (1%, 5%) € NE [(Aue, Buo)).

Then 1* = D) (%,c)) and j* = ?P(z,c) (J@,e)) :

This affirmation means the following: for any Nash equilibrium profile in the global matrix game
there is a subgame generated by the 2DBCMD&D algorithm, for which this strategy profile is also
the equilibrium profile.

In the next theorem, sufficient conditions are formulated under which a equilibrium profile in the
bimatrix subgame, generated by the 2DBCMD&D algorithm, becomes an equilibrium profile in the
initial game with the global matrices.

33

Theorem 3.4 Let’s assume thats (iz‘l,c)’jz(l,c)> e NE [(A(l,c)’B(l,c))] 15 determined by the process
(l,e)e L* x C* ={(l,¢c) e L x C: NE [(Aue), Bue)] # 0}

using the algorithm 3.2. If for any process on the column c, namely (Z c) € L* x C*, for all 7# I,the
condition jZ‘h) #+ j{l o B8 fulfilled, and for any process from the line [, namely (1,¢) € L* x C*, for all

T c, the condition ify 5y # 15y is fulfilled, then (g (i) ¥ue (3,9) € VEI)

Proof.

The proof of this theorem results directly from the Algorithm 3.2, and from the properties of the
2DBCMD&D algorithm described in Proposition 2.1.1

This theorem states the following: if in the A(; ;) submatrices of the processes on the column c there
are no marked elements which belong to the column j(*l, 0 and, at the same time, in the submatrices
B¢y of the processes on the line [there are no marked elements which belong to the line ia o)’

then the (za oy j(*l’c)> strategy profile is a Nash equilibrium profile in the initial global matrix game.

Based on the theorem 3.4 any equilibrium profile of a subgame (if it exists) is an equilibrium profile
for the initial game also. The theorem reflects the exact variant of the 2DBCMD&D algorithm

represented in the Table 4 for which, for example, (i’(*o 0),j(*0,0)> = (3,3) ¢ NE [(A(O,O)aB(O,O))] and
(P00 (Gi00)) 00 (300) = (5:2) € NEIT] = {(5,2), (1,9), (3,5), (4,3)} .

c=0 c=1
(a11,b11) (a12,b12) (a1s,b15) | (@13, b13) (@14, 014)
=0 | (a21,02) (a2, ba2) (azs,bas) | (azs,bas) (ang, boa)
(as1,b51) (asz,bs2) (ass,bss) | (as3,bs3) (as4,b54)
(as1,b61) (ae2,be2) (aes bes) | (ae3,be3) (asa,be4)
11| (asnbar) (a2 bs) (ass, bas) (a33,b33) (asa,b34)
(aq1,b41) (a42,b42) (aqs,bss) (aq3,b43) (aqq,baq)
Table 4

Remark 3.1 As a particular case of the theorem 3.4, one can consider the case when the global matriz
A is distributed as shown in Table 3 and the global matriz B is distributed as shown in Table 2. For this
distribution method, each process in the process grid L x C' determines independently the equilibrium
profiles of the the game associated to the process. This equilibrium profile is also an equilibrium profile
for the initial game without exchanging any data or comparison operations indicated in the Theorem

3.4
Let’s exemplify the theorem 3.4 by the following examples.

Example 3.2 (The global game doesn’t have Nash equilibrium profiles). Consider a bimatriz game
with the following matrices

(2,1) (06,00 (1,2)
(A>B) = (172) (2>1) (O»O)
(0,00 (1,2) (2,1)

Use the theorem 3.4 to determine the Nash equilibrium profiles.

Solution. Underlined elements in matrices show that there are no equilibrium profiles in this
game. Applying the 2DBCMD&D algorithm with 2 x 2 blocks and L x C = 2 x 2 process grid, in

34

general case we obtain:

C:O C =

_ (a11,b11) (a12,b12) (a13, b13)
o) () o)

(ag1,b21) (as22,b22)
I=11 ((as1,b31) (asz,b32)) | ((as3,b33))

and for our game

)
)

1=0 (
(
{

)
Thus, we obtain that NFE [F(O,O)] = {(1,1) = (i(o,o),j(oo) (1,1)}, NE &F(O)l)% = {(1,1) =
(i1 doy) = 1,3}, NE[Tqg] = {(1,2) = (ine.dag) = G,2)}, NE[Lay] = {(L1) =
(i1, J0,1)) = (3,3)}. Now we apply the theorem 3.4 and we get that none of these equilibrium
profiles is the equilibrium profile in the initial game because, for example, for the strategies profiles
in NE [F(o,o)] on the 1st row there are marked elements from the 1st column (if we look at it as at a
single matrix).

Let’s analyse the case when there are (I, ¢) processes in the process grid, so that (za o ja,c)> €

NE [(A(l,c)aB(l,c))] but <<P(z,c) (i?l’c)) Ve (lc))) ¢ NE|I]. In other words, not every equilibrium
profile in the subgame is an equilibrium profile in the global matriz game.

Theorem 3.5 Supposing for a given (l,c) € L x C process, using the algorithm 3.2, we found strategy
profile (’(*l c)’j{l,c)> € NE [(Aqey, Buey)] - If for fized ¢ and all U # 1 such that (I,c) € L x C the

conditions are fulfilled, where z(l o = Z(l o (j(l C)) arg max and for

Qi - g*
o€ty 0
are fulfilled where

Sk > ,
(te)(L,e) l(T oo

fized I and oll © # ¢ such that ([,¢) € L x C the conditions biZl e > bifz ot

Jis = I (iZ‘[,C)= mgm };]Ea}fl“) b, i i then (‘P(l,c) (%,c)) (i) (j?l,c))) € NE[I].

Proof. We analyse for every fixed column ¢ in the process grid the submatrices of the global matrix
A distributed across the grid and at the same time, for any fixed line [in the process gird the subma-
trices of the global matrix B distributed across the grid. According to the algorithm 3.2 if for process
(I,¢) € L x C the strategy profile (iz*l’c),jac» € NE [(A(l,c),B(LC))] then we have (izl,c)’j{l,c)) €
gr_iac) N gr_j(*l)c). Similarly, according to the algorithm 3.1 if the strategy profile (i*,j*) € NE[I']
than we have (¢*,j*) € gr_¢*Mgr_j*. As a result it is sufficient to prove that based on the conditions
of the theorem, the strategy profile (‘P(z,c) (u)) Pie) (j(l C)>> € gr_i*Ngr_j*. In other words, the

D(l,e) iZ‘[,c)) = argmaxa,;,

values z(L) and J(l 0 should be the solution to the following system ie.

V(L) (Jf}@) = argimax bij»
i > = argmaxa and (7) = argmaxb It is easy to see that ac-

4,0([,0) ((L) & i€l Mﬁ(z,c) (]fz,@) w(l’c) J(l’c) & JeJ c)(R c)) Y

cording to the conditions of the theorem, properties a), b) of the 2DBCMD&D algorithm from Propo-

sition 2.1, the last two conditions are verifiable and we get that (@(l,c) (zz‘l C)> e (]E‘l C))) € NE.

[|

The Theorem 3.5
Table 5, where the elements that are at the intersection of line [and column ¢ represent a subma-

2) € NE[(Aqp),Bog)] and

reflects the exact variant of the 2DBCMD&D algorithm represented in the

trix. Here is assumed that the strategy profile (i?O,O)’jEKO,O)) = (3,
(P00 3), Y00 (2)) = (5.2) € NEI4, B,

c=0 c=1
(a11,b11) (a12,b12) (a1s,b15) (a13,b13) (a14,b14)
o | (aenbar) (az,ba) (azs,bas) | (azs,bas) (a24,b24)
(as1,b51) (as2,bs2) (ass,bss) | (as3,bs3) (as4,bsq)
(a1,b61) (aez,bs2) (aes,bes) | (ae3,be3) (a64,b64)
=1 | (e81,031) (aaz,b32) (assbas) | (as3,bss) (ase,bs4)
(a41,ba1) (a2, ba2) (a4s, bas) (a4s, bs3) (a4a,bas)

Table 5
Let’s exemplify the theorem 3.5 by using the following examples

Example 3.3 Consider the following game (all the strategies profiles in the initial game are equilib-
rium profiles)

(1,2) (1,2) (1,2) (L,2) (1,2)
12) (1,2) (1,2) (1,2) (1,2)
4,B)=| (12) (12 (12) (1,2) (1,2
12) (1,20 (1,2) (1,2) (1,2)
1,2) (1,2) (1,2) (1,2) (L,2)

Using the theorem 3.5 to determine the Nash equilibrium profiles.

Solution. Underlined elements in matrices show that all strategies profiles are the Nash equilib-
rium profiles. Applying the 2DBCMD&D algorithm with 2 x 2 blocks and L x C' = 2 x 3 process
grid, we obtain the following set of subgames:

o
l
o
o
i
—
o
I
Lo

[l [l
18O [1B [0
R e g P

= = e e
N0 o]0 [N I
— 2 ==

= 2 = = e
10 NN |0 o
N N N S

~—]
N
~—]
N

P e DN e N N

o~ o~
Il i
s o
N P e N
—~ |~~~

N PN e

e e e e
S N

N e N N N
]~~~

G Ll 1 L Ll L
o o100 o o

N

=t == =
0 I [0 [

N
ZN
N

It is easy to see that in this case we can’t use the theorem 3.4 while using the theorem 3.5 we obtain
that all equilibrium profiles in subgames are equilibrium profiles in the initial game with the global
matrices.

Example 3.4 Determine the equilibrium profiles in the following bimatriz game

(400,0) (0,200) (0,100) (0,0) (0,—100)
(300,0) (300,0) (0,100) (0,0) (O, — 100)
(A,B) = (200,0) (200,0) (200,0) (0,0) (0,—100)
(100,0) (100,0) (100,0) (100,0) (0,-100)
0,00 (0,00 (0,9 (0,0 (0,0)

when the matrices are divided and distributed using the 2D cyclic algorithm.

36

Solution. We determine the equilibrium profiles by the method of the intersection of the graphs
of the multiset applications of the best-response type. So i*(1) = {1},7*(1) = {2}; ©*(2) = {2},
5(2) = (3% #(3) = {3}, 7°3) = {1,2,3,4); #"(4) = {4}, 5"(4) = {1,2,3,4); #(5) = {1,2,3,4,5},

7*(5) = {1,2,3,4,5}; i*(6) = {12340} *(6) = {1,2,3,4,5,6}. Now we calculate the graphs
gr_i* = {(1,1), (2,2), (3,3), (1,3), (2,3), -- (1,5), (2,5), (3,5), (4,5), [(5.5)

(1,6), (2,6), (3, 6‘) (4,6), (5,)} and gr_i* =1{(1,2), <2,3) (3,1), (3,2), (5:3][3: 414, 4), (4,1),
(4,2), (4,3), (4 4, (5,1), (5,2), (5,3), (5,4), (5:5), (6,1), (6,2), (6,3), (6,4), (6,5)}. It’s obvious that
gr i Ngr_j* = {(d d) (4,4)}. The equilibrium profiles of this game are NE = {(3, 3), (4,4), (5,5)}.
We use the 2DBCMD&D algorithm when the block dimension is 2 x 2, the size of the process grid
is 2 x 3 and in general case we get the following matrix distribution:

c=10 c=1 c=2
(a11,b11) (a12,b12) | (a13,b13) (a14,b14) | (a1s,b15)
=0\ (a21,b21) (age,bo2) (a3, b23) (ag4,b24) (ags, bas)
(as1,bs1) (as2,bs2) | (ass,bss) (asa,bsa) | [(@s5,055)
=1 | (as1031) (as2,b32) (ass.b33) (ags,b34) | (ass,bss)
(aq1,b41) (aq2,ba2) (@43, bas) (@44, bag)] (a4s,bys)

So, we obtain the following set of subgames:

c=0 c=1 c=2

(400,0) (0,200) (0,100) (0,0) (0, —100)

=01 (300,0) (300,0) (0,100) (0,0) (0,—100)
(0,0) (0,0) 0,00 (0,0) (0,0)

1| 20,0 (0,0 | 0 (0,0 | (0,=100)
- (100,0) (100,0) | (100,0) [(100,0) | (0,—100)

Here the elements that are at the intersection of line [and column ¢ reprezent a submatrix. The Nash

equilibrium profiles in subgames and the corresponding strategy profiles in the initial games of the
global matrices are represented in the following table:

(I,c) (i?l,c)’j*z,c)> ((’p(l)c) (%@)) s P(e) (j?l,c)>> Theorem 3.5
(0,0) (2,2) (2,2) No
{(171);(2’1); . L(E 2.

00| G156 20 (1,3); (2,3); (5,3); (5,4) No
.2 1O (1,5): (2,5); 5.5) 5.1)
(1,0) (1,1);(1,2) (3,1);(3,2) No
L) | (1,1);(2,2) (3,3);(4,4) (1,1);(2,2)
1,2)] (1,1);(2,1) (3,4);(4,5) No

As a result we have built the NE = {(3, 3), (4,4), (5,5)} set.
Theorem 3.5 generates the next parallel algorithm for determining the Nash equilibrium profiles
from the NE[I'] set, using the 2DBCMD&D algorithm.

37

Algorithm 3.6

1. For a parallel DMM system a virtual communicator (or context) is generated with a two di-
mensional Cartesian topology L x C' of a network type. Each (I,c¢) € L x C process, in par-
allel and independently, using the 2DBCMD&D algorithm, builds a corresponding I'c;) =
<I(Cy[), Je)s Ae)s B(c,l)> matrix subgame.

2. Bach process (I,¢) € L x C of a parallel DMM system determines independently the set of the
Nash equilibrium profiles NE['(. ;)] using the algorithm 3.2.

3. According to the theorem 3.5, based on the elements of NE[['(. ;)] the elements from NE(['] are
built. In other words, for any given strategy profile (i’(“llc),jac)) € NE [(A(l,c): B(z,c))] we verify

f
1(90(1,c) (i?l,c)) V(1) (‘j(*l,c)>> € NE[[] in the following way:

a) for fixed ¢ and all 1 # [such that (I,¢) € L x C we verify if ag, where

i =15 (55) =arg max a;. g+ .
l: L~ ~ * s a)
(Le) = oo i o€lqy o0

3 > [e7%] 3
Jile)y = THTelte)

where

b) for fixed ! and all € % ¢ such that ({,€) € L x C we verify if b;

;¥ > 3 S
i ; ey Ie) = bl(t,cﬂu,a
. »
= 1 = ar max J* Ty .
Hid) = 302 Fue) = or8, max b dug

4 So, if the conditions a) and b) are verified simultaneously, then (‘P(l,c) (Z?z C)> V() (j{l,c)>> €
NET.

4 Conclusions and future work

It is well known that the following steps must be taken to develop any parallel algorithm: a) partition
the input into several partitions of almost equal sizes and distribute this data on a parallel computing
system; b) solve recursively the subproblem defined by each partition of the input; ¢) combine or
merge the solutions of the different subproblems into a solution for the overall problem. In this article,
to solve the bimatrix games in complete and imperfect information over the sets of pure strategies we
elaborate the parallel algorithm for which: step a) is achieved by using the 2DBCMD&D algorithm;
to perform step b) the Algorithm 3.1 is used; and step c) is carried out using the Theorem 3.2. Thus,
the main results of this article can serve as a basis for solving bimatrix games with very large matrices.

We consider that, as a continuation of the research, can be used different ways of dividing and
sharing (partitioning) matrices and the launching of a comparative study of the execution time in solv-
ing the generated subgames. Also future work can include the design of CPU/GPU-based algorithms
implementing other methods for computing Nash equilibria.

References:
(1] J. Dongarra and D. Walker, "Software Libraries for Linear Algebra. Computations on High Per-
formance Computers," SIAM Review, vol. 37, no. 2, pp. 151-180, 1995.
[2] V.Kumar, A. Grama, A. Gupta, and G. Karypis, "Introduction to Parallel Computing". Redwood
City, Calif.: Benjamin/Cummings. Publishing Company, Inc., 1994
[3] Antoine P. Petutet and Jack J. Dongarra "Algoritmic Redistribuition Mtehods for Block-Cyclic
Decompositions" IEEE Transactions on parallel adn distributed systems, vol.10, no, 12 1999

38

[4] M. Dayde, I. Duff, and A. Petitet, "A Parallel Block Implementation of Level 3 BLAS for MIMD
Vector Processors" ACM Trans.Mathematical Software, vol. 20, no. 2, pp. 178-193, 1994.

(5] Jack J. Dongarra , lain S. Duff , Danny C. Sorensen and Henk A. van der Vorst "Numerical
Linear Algebra for High-Performance Computers". 1998

(6] Choi, J.; Dongarra, J. J.; Pozo, R.; Walker, D. W. "ScaLAPACK: a scalable linear algebra
library for distributed memory concurrent computers". Proceedings of the Fourth Symposium on
the Frontiers of Massively Parallel Computation. p. 120. doi:10.1109/FMPC.1992.234898. ISBN
978-0-8186-2772-9. 1992

[7] Piotr Luszczek, Jack J. Dongarra "Linear algebra - software issues." Scholarpedia, 2011. [Online}.
Available: http://www.scholarpedia.org/article/Linear _algebra_-_software _issue

[8] Olivier Beaumont, Brett A. Becker, Ashley DeFlumere, Lionel Eyraud-Dubois, Thomas Lambert,
and Alexey Lastovetsky. "Recent Advances in Matrix Partitioning for Parallel Computing on
Heterogeneous Platforms". 2018. [Online]. Available: https://hal.inria.fr/hal-01670672v2.

[9] Joseph Jaja, An Introduction to Parallel Algorithms, Addison-Wesley Publishing Company, Inc.,
1992.

[10] “ScaLAPACK - Scalable Linear Algebra PACKage". [Online]. Available:

http://www.netlib.org/scalapack/.

Date despre autori:

Boris HANCU, doctor in stiinte matematice, conferentiar universitar, Universitatea de Stat
din Moldova.
Email: boris.hancu@gmail.com.

Emil CATARANCIUC, doctorand Scoala doctorald de Stiinte Fizice, Matematice, ale Infor-
matiet i Ingineregti, Universitatea de Stat din Moldova.
Email: ecataranciuc@gmail.com

Prezentat la 16.12.2020

39

