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NASH EQUILIBRIA IN THE TWO PLAYERS NONCOOPERATIVE  

INFORMATIONAL EXTENDED GAMES 

Ludmila NOVAC 

Catedra Informatică şi Optimizare Discretă 
 
Articolul conţine descrierea jocurilor noncooperatiste informaţional extinse, adică astfel de jocuri în care participanţii 

cunosc strategiile alese ale adversarilor săi. Pentru aceste tipuri de jocuri informaţional extinse se analizează existenţa 
situaţiilor Nash de echilibru. Este formulată şi demonstrată teorema de existenţă a situaţiilor Nash de echilibru pentru 
jocurile noncooperatiste informaţional extinse de două persoane. La demonstrarea acestei teoreme este utilizată teorema 
Kakutani despre punctele fixe pentru aplicaţiile multivoce. 

 
 
1. Preliminary facts 

1.1. Fixed points and contraction mappings 

Consider the function f: X→X. An element Xx ∈  is called fixed point of f if f(x)=x. 
The fixed points of the function f are the intersection points of the graph of f with the product X×X. 
 
Properties of fixed points 
1. If there are two functions f and g from X into Y, then the point Xx* ∈   for which f(x∗)=g(x∗), is called 

point of coincidence for the functions f and g. 
2. Sometimes it is convenient to use the cyclic points of the function f together with the fixed points, 

especially in the case when fixed points do not exist. Cyclic points are called the points which are images of 
the iterative function fⁿ, where n is a natural number. These are cyclic points of the nth order. Often such 
points do not exist and in these cases we can use limit cycles. Also we can speak about the invariant sets, i.e. 
subsets XY ⊂ , for which f(Y)=Y. In such cases the minimal invariant subsets are very important. 

The notation YX:F 2→  will denote a point-to-set mapping, were 2Y denotes the set of all subsets of Y. 
A fixed point of the point-to-set mapping YX:F 2→  is called a point Xx* ∈ , such that ( )** xFx ∈ . The 
graph for the application F is called the set ( ) ( ) ( ){ } xFyX,x|YXyx,Fgr ∈∈×∈= . This set can contain 
some points or can be the empty set.  

 
1.2. The Kakutani fixed point theorem 

The existence of the fixed points is considered an important problem. The existence (and other properties) 
of the fixed point for the function f: X→X depends on the properties of f and on the properties of the space X. 
Often it is considered that f is a continuous function. 

Definition 1. The function f of the metric space into itself is called contraction mapping if there exists 
constant K<1, such that for each two points x and y the inequality ρ(f(x),f(y))≤Kρ(x,y) holds. 

There are some important properties for the fixed points. 
Proposition 1. If f is a contraction mapping, then there exists not more than a single fixed point (see [2], [3]). 
Theorem 1. (Principle of the contraction mapping). Consider that f is a contraction mapping of the complete 

metric space X into itself. Then for each point Xx ∈  the sequence x, f(x), f²(x)=f(f(x)), f³(x),... converges to 
a fixed point. So f has a single fixed point ([2], [3]). 

The points x, f(x), f²(x),... are called consequent approximations of the fixed point. 
In the case of the contraction mapping we can consider as a start element every element x and the conse-

cutive approximations converge to the fixed point. 
The Kakutani fixed point theorem is a fixed-point theorem for point-to-set mapping. It provides sufficient 

conditions for a point-to-set mapping defined on a convex, compact subset of a Euclidean space to have a fixed 
point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization 
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of Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which 
proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean 
spaces. Kakutani theorem extends this to point-to-set mapping. 

The theorem was developed by Shizuo Kakutani in 1941 and was famously used by John Nash in his des-
cription of Nash equilibrium. It has subsequently found widespread application in game theory and economics. 
Many problems in economy appear as problems of maximization and usually the solution of such problems 
is many-valued. 

Before giving this theorem we need to recall some definitions. 
Definition 2. Consider topological spaces X and Y. A point-to-set mapping F: X⇒2Y is said to be closed if 

the graph of F is closed as a subset into the product of the spaces X×Y. 
That is if the sequence of points (xn,yn) from gr(F) converges to a point ( ) YXyx, ×∈ , then the limit point 

( ) ( )Fgryx, ∈  [3]. 
Theorem (Kakutani). (1941). Let X be a Banach space and K a non-empty, compact and convex subset 

of X. Let F: K⇒2K be a point-to-set mapping on K with a closed graph and the property that the set F(x) is 
non-empty and convex for all Kx ∈ . Then F has a fixed point. 

For proof see Berge ([1], p.74-76), [2]. 
Before giving the applications of the fixed points in the game theory we will recall some other important 

theorems. 
Let C(K) be the space of all continuous functions defined on the compactum K. 
Theorem (Arzelà-Ascoli). (Compactness criterion). A set of continuous functions ( )kCE ⊆  is compact 

if and only if the set E is uniformly bounded: (|x(t)|≤N, Kt ∈∀ , for Ex ∈∀ ) and the functions from the set 
E are equicontinuous (i.e. for ε∀ , δ∃  so that if ρ(t1,t2)<δ then |x(t1)-x(t2)|<ε for Ex ∈∀ ). 

Theorem (Tihonov). A product of a family of compact topological spaces X=∏
∈Aα

Xα  is compact. 

Lemma [4]. 1) If X and Y are two compactums with the same metric and f:X→Y is a continuous function, 
then the set 

⎭
⎬
⎫

⎩
⎨
⎧ ∈

∈∈

f(z)  =f(x) | Xx = f(x) Arg maxmax
XzXx

 is compact too. 

2) If X and Y are two compactums with the same metric, and K(x,y) is a continuous function on X×Y, then 
ϕ(y)=

Xx
max

∈
K(x,y) and ψ(x)=

Yy
min

∈
K(x,y) are continuous functions on Y and X respectively. 

 
2. Strategic form games and Nash equilibriums 
In this part we will analyse games in which the players choose their actions simultaneously (without the 

knowledge of other player choices). The game will assume that players payoff functions are common knowledge. 
Definition 3. A strategic form of the game consists of: a finite set of players I={1,2,...,n}, action spaces 

(set of strategies) of players, denoted by Ii,X i ∈ ; and payoff functions of players Ii,RX:Hi ∈→ , where 
X=X1×...×Xn. We refer to such a game as the tuple ( ) IiiIii H,)(X I, ∈∈  denoted by Γ. 

An outcome is an action profile (x1, x2, ..., xn), and the outcome space is iIi
XX

∈
×= . The game is common 

knowledge among the players. 
One of the most common interpretations of Nash equilibrium (introduced by John Nash in 1950) is that it 

is a steady state in the sense that no rational player has an incentive to unilaterally deviate from it.  
Let x-i≡(x1, x2,..., xi-1, xi+1,..., xn) and (x-i,yi)≡(x1, x2,...,xi-1, yi, xi+1,..., xn). 
Definition 4. A Nash equilibrium of the game Γ is an action profile Xx* ∈  such that for every Ii ∈  the 

relations ( ) ( )i
*

ii
*

i x,xHxH −≥  hold for all ii Xx ∈ . 
Another and sometimes a more convenient way of defining Nash equilibrium is via best response corres-

pondences Bri: ×Xj⇒ Xi  such that 
( ) ( ){ }.Xxforx,xx:Xx  )(x Br i

'
i

'
iiiii ii-i  ∈∀ ≥  ∈= −ΗΗ  (*) 
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Definition 5. A Nash equilibrium is an action profile x∗ such that ( )*
i-i

*
i xBrx ∈  for all Ii ∈ . 

If the sets Xi are compacts and the functions Hi are continuous, then the best response set (*) for the 
player i can be represented by: 

Bri (x-i) = Arg
Xx

max
ii∈
Hi(x-i,xi). 

Given a strategic form of the game ( ) IiiIii H,)(X I, ∈∈≡Γ , the set of Nash equilibria is denoted by NE(Γ). 

Using the best response sets of the players we consider the point-to-set mapping Br:×Xi⇒2X such that  
Br = (Br1, Br2,..., Brn ). 

Then we can easily prove that ( )ΓNEx* ∈  if and only if x∗ is a fixed point of the set-valued mapping  
Br, i.e. ( )** xBrx ∈ . 

 
3. Applications of the fixed point theorem for the two players informational extended games 

Description of the game: 

Consider a static game with two players and consider that the second player knows the chosen strategy of 
the first player. 

The game is realised as follows: the players choose his strategies simultaneously, after that each of them 
determines his payoff and the game is over. 

Let us denote by C(X,Y) the space of all continuous functions from X into Y, were X and Y are compactums. 
Let us define this game in the normal form by: 2Γ=<X,Y , H1, H2>, where Y  represents the set of strategies 

for the second player and is defined by Y = {ϕ: X→Y}, the functions ( )Y,XC∈ϕ  are continuous on the 
compactum X, the payoff functions for the players are defined on the product of the sets of strategies: Hi : 
X×Y →R, (i=1,2). 

Next we will prove the following 
Theorem. Let us consider that for the game 2Γ the next conditions hold: 
1) X and Y are non-empty compact and convex sets of Banach space, 
2) the set of functions ( )Y,XCY ⊂  is uniformly bounded and the functions from the set Y  are equicontinuous; 

3) the real-valued functions H1(x,ϕ(x)), H2(x,ϕ(x)) are continuous on the compact X×Y  and concave on 
X, (on Y , respectively). 

Then NE(2Γ)≠∅. 

Proof. Let S=X×Y  be the outcome space. According to Arzelà-Ascoli theorem the set Y  is compact, and 
according to Tihonov theorem the outcome space S is compact too. 

We define the point-to-set mapping B: S⇒ 2S, such that B(s)=(B1(ϕ),B2(x)), where B1(ϕ), B2(x) represent 
the best response sets for the first and second player, respectively. 

Because X and Y  are compacts and H1, H2 are continuous functions, then according to Weierstrass 
theorem we can write: 

(x)),(x,Hmax Arg = )(B 1Xx1 ϕϕ
∈

 

(x)),(x,Hmax Arg = (x)B 2Y2 ϕ
ϕ∈

 

i.e.: 
( ) ( )( ) ( )( ){ },z,zmaxx,x:Xx HHB Xz

ϕϕϕ 111 ∈
=∈=  

( ) ( )( ) ( )( ){ }.x,xmaxx,x:Yx HHB Y
ψϕϕ

ψ 222 ∈
=∈=  

In order to use the Kakutani theorem we need to prove that: 
1) S=X×Y ≠∅ is non-empty convex compact set; 
2) for the point-to-set mapping B: S⇒ 2S the next conditions hold: 
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a) for ,Xx ∈∀  Y∈∀ϕ  the set B(x,ϕ)≠∅ is a convex subset of S; 
b) the point-to-set mapping B is closed. 
Firstly we will prove that S is convex and compact. 
The set Y  is convex if: for Y, ∈∀ 21 ϕϕ , and [ ]10,∈λ  the function ( ) 21 1 ϕλλϕ −+  is bounded by the 

same constant N (see Arzelà-Ascoli theorem) and the function ( ) 21 1 ϕλλϕ −+  is equicontinuous. 
It is easy to prove that the function ( ) 21 1 ϕλλϕ −+  is bounded by the same constant N: 

( ) ( ) ( ) ( ) ( ) ( ) ≤−+≤−+ xxxx 2121 11 ϕλϕλϕλλϕ  λN+(1-λ)N =N for Y, ∈∀ 21 ϕϕ , and [ ]10,∈λ . 

Evidently the function ( ) 21 1 ϕλλϕ −+  is equicontinuous. So the set Y  is convex. Then the set S is convex 
and compact too. 

Next we need to prove that for the point-to-set mapping B: S⇒ 2S the conditions a) and b) hold. 
Firstly we will prove the condition a). For Xx ∈∀  and Y∈∀ϕ  the set B(x,ϕ) is non-empty, this 

follows from the Weierstrass theorem, because B1(ϕ) and B2(x) are non-empty sets. 
Next we need to prove that the set B(x,ϕ) is convex for ,Xx ∈∀  Y∈∀ϕ . 

Firstly we will prove that B1(ϕ) is a convex set. Let us suppose that there are two elements 
( )ϕ121 Bx,x ∈  and 0≤λ≤1, then because H1 is a concave function it follows that: 

H1(λx1+(1-λ)x2,ϕ) ≥ λH1(x1,ϕ)+(1-λ)H1(x2,ϕ) = 

= λ
Xz

max
∈

H1(z,ϕ(z))+(1-λ) 
Xz

max
∈

H1(z,ϕ(z)) = 
Xz

max
∈

H1(z,ϕ(z)). 

On the other hand, since X is a convex compactum, then ( ) Xxx ∈−+ 21 1 λλ , so it follows that 
H1(λx1+(1-λ)x2,ϕ) ≤ 

Xz
max

∈
H1(z,ϕ(z)). Then it results that: 

( )( ) ( )( )z,zH,xxH max
Xz

ϕϕλλ 1211 1
∈

=−+ ; thus ( ) ( )ϕλλ 121 1 Bxx ∈−+ , which implies that B1(ϕ) is a convex set.  

Next we will prove that the set B2(x) is convex too. 
The function H2(x,ϕ(x)) is concave on the compact set ( )Y,XCY ⊂ , then by definition for [ ]10,∈∀λ , 

and Y, ∈∀ 21 ϕϕ  the relation H2(x,λϕ₁+(1-λ)ϕ₂)≥λH2(x,ϕ₁)+(1-λ)H2(x,ϕ₂) holds. 
To prove that the set B2(x) is convex we need to prove that ( ) Y∈−+ 21 1 ϕλλϕ . 
Consider the functions Y, ∈21 ϕϕ  which are bounded and equicontinuous. 

Evidently, the function λϕ₁+(1-λ)ϕ2 is equicontinuous, so it follows that λϕ₁+(1-λ)ϕ₂∈ B2(x), thus B2(x) 
is a convex set. 

From what was proved it follows that for Xx ∈∀  and Y∈∀ϕ  we will have a convex subset 

B(s)=(B1(ϕ),B2(x))≠∅ from S=X×Y . 
Next we will prove the condition b). We need to prove that the point-to-set mapping B is closed. 
Analyse the point-to-set mapping SS:B 2→  which maps the point ( ) S,x ∈ϕ  to the set ( ) ( ) SxBB ⊂× 21 ϕ . 

The point-to-set mapping B is closed if its graph is a closed set [4]. Since B1(ϕ) is a subset from the 
compactum X, and B2(x) is a subset from the compactum Y , then grB1(ϕ) and grB2(x) are compact sets. 
Here the graphs for the sets B1(ϕ) and B2(x) are defined by: 

, Y(z)),(z,H Arg x |)(x,grB 1
Xz

max ⎭
⎬
⎫

⎩
⎨
⎧ ∈∈=

∈

ϕϕϕ1
 

.(x))  (x,H Arg X,x |)(x, =grB 2
Y

 2 max
⎭
⎬
⎫

⎩
⎨
⎧

∈∈
∈

ψϕϕ
ψ

 

We will prove that the sets B1(ϕ) and B2(x) are closed. 
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The set B1(ϕ) can be rewritten as follows: 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ∈=

∈

0=(z))(z,H - (x))(x,H :XxB  1
Xz

 1 max ϕϕϕ1
. 

Because the set X is compact and the function H1 is continuous on X, then the function ( )( ) ( )( )z,zHmaxx,xH
Xz

ϕϕ 11 ∈
−  

is continuous on X too. So for ϕ∀  the set B1(ϕ) is closed (and compact). In a similar manner we will prove 

that the set B2(x) is closed: since Y  is compact and the function H2 is continuous on Y , then the function 
( )( ) ( )( )x,xHmaxx,xH

Y
ψϕ

ψ 22 ∈
−  is continuous on Y  too, thus it follows that for Xx ∈∀  the set ( ) YxB ⊂2  is 

closed. 
Then accordingly to the Tihonov theorem, because  

( )( ) ( ) ( ){ }Yx,Bx|YXx,xgrB ∈∈×∈= ϕϕϕ 11   is a closed set and 
( )( ) ( ) ( ){ }xBx,Xx|YXx,xgrB 22 ∈∈×∈= ϕϕ   is a closed set, it follows that  

( )( ) ( )( ) ( ) ( ){ }xBx,xBx|Sx,xgrB 21 ∈∈∈= ϕϕϕ  is a closed set too. 
Thus the point-to-set mapping B is closed. 
Therefore we can apply the Kakutani theorem. 
Let( )  YX=S,x 00 ×∈ϕ be the fixed point for the point-to-set mapping B, i.e. ( ) ( ) ( ) ( ) xBB=,xB,x 0010000 2×∈ ϕϕϕ , 

so the relations 
( ) ( ),,xHmax,xH

Xx 01001 ϕϕ
∈

=  

( ) ( )ϕϕ
ϕ

,xHmax,xH
y 02002 ∈

=  

hold, thus by definition of the Nash equilibrium it follows that ( ) ( )  NE,x 00 ≠∈ Γϕ 2 ∅.■ 
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