STUDIA UNIVERSITATIS

Revistă științifică a Universității de Stat din Moldova, 2008, nr.3(13)

SEGMENTAL INTELLIGIBILITY TEST OF TEXT-TO-SPEECH SERVICES FOR ROMANIAN LANGUAGE BASED ON LOGOTOMS

Olga PUSTOVALOVA

Catedra Tehnologii de Programare

Sinteză vocii oferă posibilitatea de a citi texte în mod automat fără participarea omului. Sisteme de acest tip primesc mesajul de tip text la intrare și generează semnalul vocal la ieșire. Au fost elaborate diferite aplicații de sinteză vocală, folosite acum în citirea paginilor web, cărtilor, sistemelor de navigare GPS pentru automobile etc.

Calitatea vocii generate în mod automat depinde de tehnologiile de creare. Pentru testarea vocilor noi se aplică metode de estimare a calității. Teste de tip *"logotoms*" evaluează claritatea segmentală a vocii, anume: claritatea sunetelor separate în diferite poziții ale cuvântului. Cuvinte de tip *"logotom*" sunt intenționate de a fi incidente în sens semantic.

În această lucrare este prezentat un test de tip "logotom" elaborat pentru limba română.

Introduction

Speech synthesis allows reading a text automatically without involving a human speaker each time. *Text-to-speech* (TTS) conversion systems receive a text on input and generate a *speech waveform* on output, which gives to a computer a possibility to play an audio version of relevant text.

Various applications of speech synthesis have been designed over the years. Speech synthesis is now useful in reading web-pages or e-mail messages, creating audio-books for personal use, listening instructions of GPS navigation systems while driving a car etc. It provides significant help for visually impaired users. Research and development companies work over improvement of speech usage in such areas as call center assistance or e-commerce.

However, the quality of automatically generated speech may vary. In particular, it strongly depends on technologies used for speech generation. Some synthetic voices may sound mechanical, may have unpleasant intonations or unintelligible sounds.

When selecting a voice for a specific use, or when testing a newly developed voice, a number of quality assessment methods could be applied. These methods estimate voice intelligibility or/and voice naturalness. Input data for such measurements is language-dependent.

In this paper, some effective methods of quality assessment are described. Sample data for experiments with Romanian voices are presented.

1. Criteria of quality

Quality measurement needs general agreements: we nee to define, what items are essential for quality measurement and what methods of assessment would be valid. TTS speech quality is usually measured in comparison to performance of another TTS [5], natural voice is also included as TTS. Synthetic voices are usually compared to each other on the following criteria of quality: intelligibility and naturalness [7]. Definitions are represented in their traditional meaning, as presented in sources i.e. [5] and [6].

Intelligibility is capability of synthetic speech of being understood, or comprehended. If speech is not articulated enough, its quality would be low.

Segmental intelligibility is capability to articulate separate sounds clearly. That parameter shows whether speech items which construct words are integrated enough to make these words understandable.

Supra-segmental intelligibility is capability to articulate the whole message clearly, and high intelligibility of a separate sound could be optional in this case.

Naturalness is another measured factor, and it's usually understood as a way of similarity between human and synthetic speech prosody. It includes intonations, accents, general sounding of speech. Though there are no certain conventions of what naturalness really is ([8], p.2), a number of factors are considered to affect naturalness: occurrence of deviating speech sounds, speaking rate, voice pleasantness, appropriate liveliness etc. ([8], p.5).

Intelligibility and naturalness are both essential for speech quality assessment, and can be measured for estimating both speech presentation and speech perception. Though, other factors may be considered depending on actual problem (i.e. [4]).

2. Materials and methods

2.1. Experiment requirements

Speech quality is subjective; it means that only series of experiments involving human interaction can bring reliable results [9]. A group of selected subjects is meant to statistically represent future users of TTS. Subjects may be asked to repeat pronounced words, write down on a sheet missing parts of words or sentences pronounced by synthetic voice, or evaluate different aspects of TTS performance by filling an opinion questionnaire [9].

The following elements are required for subjective quality assessment of a given TTS:

- **stimuli:** voice samples generated by TTS. Selection of stimuli depends on approach used for quality assessment.
- **participants, or subjects:** people who agreed to participate in session of TTS quality assessment. An important thing is that TTS system's performance is measured, not subjects'.

In some methods, stimuli must be generated by several different TTS systems (i.e. [5]). Quality of a particular TTS is then defined in reference to other systems' performance.

2.2. TTS for Romanian language

In quality assessment sessions several TTS can be compared. The following Romanian TTS are available for on-line testing are presented in the Table 1:

Table 1

Name	Company
IVONA, voice "Carmen"	IVO Software, Poland
	http://www.ivosoftware.com/ivonaonline.php
Phobos, based on MBROLA	Phobos Soft, Romania
	http://www.phobos.ro/demos/tts/index.html
Baum, voice "Ancutza"	Baum Engineering SRL, Romania
	http://www.baum.ro/ro/online/online.html

List of some Romanian text-to-speech engines

2.3. Intelligibility tests

Segmental intelligibility tests are designed for measuring intelligibility of separate sounds, and it needs careful preparation of word lists. Supra-segmental intelligibility is used for evaluation of the whole sentences or tests, so that sentences or text preparation is needed [6].

Ojala [6] gives a review of existing intelligibility tests, giving the following classification:

- tests based on meaningful words (phonetically balanced word lists [1]; rhyme tests (i.e.[2]));
- tests based on non-sense words (logotoms) [3].

2.4. Segmental intelligibility test based on non-sense words (logotoms)

Stimuli are presented as template-based words [2] generally having no sense (also named *logotoms*). Word templates are often the following: CVC – for testing consonants in initial and final positions; VCV – for testing consonants in middle position; where V – vowels, C – consonants. Other word templates may be used, if necessary [6].

Subjects are asked to repeat words played back to them, or write down missing sounds by filling gaps on a response sheet. The test is semantically unpredictable, and therefore allows assessing genuine sound intelligibility.

3. Experiment

3.1. Experimental model

In use case for Romanian, word set was generated using a table of letter occurrences in Romanian. The task is to disseminate letters aiming to fill available templates (i.e. CVC and VCV) in such a way that their occurrence frequencies [10] would coincide with usual frequencies for the language.

Word templates are coded in input txt-file. Two main symbols may be used: to code a vowel ('&') or a consonant ('#'). All other symbols are not processed and are presented in output file via blank spaces.

STUDIA UNIVERSITATIS

Revistă științifică a Universității de Stat din Moldova, 2008, nr.3(13)

Since the task is similar to aleatory variable modeling, we used the built-in Pascal random number generator. Occurrence frequencies and corresponding letters are defined as constant arrays. Generated random number means a point collocated between occurrence frequencies of two alphabet letters, so the letter could be extracted. In fact, values of frequencies are presented as lengths of closed geometrical intervals, and chance of selecting a point which belongs to an interval of a specific letter would be better when letter frequency is larger. A scheme of realization is given below:

```
repeat goal:=random until match(goal,ltype); {goal is vowel/consonant}
currentPath:=0;
currentLetter:=1;
while currentPath < goal do
begin
currentPath:= currentPath + space[currentLetter];
currentLetter:=currentLetter+1;
end;</pre>
```

getLetter:= letter[currentLetter-1];

Here *letter[]* is an array of letter characters, *space[]* is an array of corresponding letter frequencies. Data contained in constant arrays are optimized so that letters with higher frequencies are positioned earlier.

Each generated random letter is written in output file according to input file content.

Any number of intelligibility tests can be generated by such a mechanism.

3.2. Obtained data set

Word set was balanced to provide standard occurrences for each vowel and consonant, both in initial and final position. Obtained example results are presented in Table 2 and Table 3. **Table 2**

Segmental intelligibility test for Romanian – logotoms for VCV template										
uvi	âle	îce	ici	Alu	idi	ibă	Eci	ele	alu	
ane	eto	ade	ure	Ule	iri	ici	Ăci	uri	iră	
ede	ada	ade	eră	Ina	uti	ate	Ute	eta	esu	
odi	efa	aru	ето	Ute	ară	eci	Ula	înî	eru	
ute	ilu	ufu	eru	ети	alo	ота	Ure	eli	ucâ	
ubi	ili	ălo	olu	ără	eşi	ane	Uvi	есă	ере	
ara	ore	ето	ore	ără	ătâ	eră	Uta	ati	ini	
alu	ito	ana	edâ	ali	еса	ate	Ера	ăna	îce	
eci	etu	ană	іра	ere	idi	isu	Ode	ира	isi	
ate	ivi	uri	ato	есă	efi	âma	Uni	ari	use	
ilu	egă	ato	oda	ato	орі	ata	Ema	ămi	era	
işi	adâ	eta	aşî	ito	ăre	ena	Uli	ăne	ena	
uțe	iro	oră	ena	ele	aci	ifă	Uda	ato	ele	
ono	ele	ită	ate	île	ita	аса	Eco	ibi	ato	
ire	еја	ăta	ici	idi	ăsu	ite	Ăre	ita	ire	
ece	âci	ace	oso	ari	ada	iza	Ubă	ătî	uge	
era	îpe	ige	ită	ală	usu	ina	Eta	ulo	iri	
udi	eti	ăco	ută	adu	ase	ăpi	Ine	yni	ati	
ime	ili	ăle	imă	ule	esa	ene	Ădo	ofe	ivu	
ome	eni	elă	asa	uda	eto	evi	Ara	itu	işi	
avă	ure	eli	idi	itu	isu	ape	Ора	iva	ăru	
ăgă	ună	ura	ore	âgu	ăse	utu	Aco	una	ili	
odi	ada	eva	ărî	ifi	асă	ula	Asa	ana	uto	
орі	eta	ici	esi	осо	awu	obe	Uni	еса	aci	
îlî	enâ	ase	ăre	ilu	una	ise	Ise	ато	ofi	

Segmental intelligibility test for Romanian - logotoms for VCV template

Informatică

Table 3

măn	pîţ	sel	rit	nic	tim	tip	Loh	sad	cuv
ris	tăl	tev	tan	dil	nad	cit	Nas	tîn	til
rac	nin	sad	per	tiş	rel	tag	Lâc	sal	păt
nif	mâl	ter	rid	cig	vip	per	Cec	şab	xal
tip	cit	vin	puf	ses	vez	lec	Şan	SOS	ces
sun	tac	dem	ris	cas	luv	men	Sud	cum	tac
lic	car	nip	rod	şun	năl	tup	Ref	lir	tar
sil	rid	dan	cen	daz	lad	xan	Gin	mer	tap
şam	din	gan	hev	răl	râg	lir	Pun	dil	mâl
neț	car	тес	pul	lig	pâş	lan	Lev	doş	tut
rel	tis	nes	nor	păş	lut	rez	Sel	ten	şeţ
del	fef	nac	ded	lâr	răs	cer	Neb	lal	săc
ted	sit	năl	nat	cal	şăr	tîc	răr	tir	tap
rac	nin	cal	mal	zif	pip	lam	тăт	las	tuj
lab	ruc	pen	bon	tas	met	sîs	căs	cil	tat
toc	mal	suc	mav	pet	sav	pen	cin	let	cop
min	tam	dăf	nuf	сиş	nit	tav	man	rut	gîn
rez	toc	cis	lel	tev	men	tiv	fap	dal	SOS
dul	tat	lec	şad	nat	тес	tir	ter	moş	pec
păz	păd	rer	col	des	cin	nir	şun	ţar	paş
rel	cut	тес	ten	tet	tud	ril	nas	şer	rîs
lun	tuc	nir	car	put	reș	pan	tîr	pos	leg
pîp	mav	rez	nid	bit	jax	nin	pot	xad	het
măţ	piv	vug	tup	lit	şiv	răl	bir	lis	tus
ler	mip	măt	mas	şăl	ţaf	cal	răr	căr	teş

Segmental intelligibility test for Romanian - logotoms for CVC template

4. Discussion

Generated test can be evaluated by accuracy of occurrence frequencies. Dimension of evaluated letter set would be 1500 letters (in words presented in Table 2 and Table 3).

Table 4 presents the following information:

Column 1. Letter.

Column 2. Percentage of its occurrence in the language, cited from [10].

Column 3. Occurrences of the letter in the evaluated word set (table 2 and table 3).

Column 4. Percentage of the letter occurrence in the evaluated word set.

Column 5. Difference between 2 and 4. Easy to notice, that maximum difference values are 1,45 ('L'), 1,09 ('T') and 1,07 ('N') - all for consonants.

#	1	2	3	4	5	#	1	2	3	4	5
1	Е	11.47	171	11,40	0,07	17	Î	1.40	19	1,27	0,13
2	Ι	9.96	164	10,93	-0,97	18	V	1.23	25	1,67	-0,44
3	А	9.95	161	10,73	-0,78	19	F	1.18	17	1,13	0,05
4	R	6.82	91	6,07	0,75	20	В	1.07	11	0,73	0,34
5	Ν	6.47	81	5,40	1,07	21	Ţ	1.00	7	0,47	0,53
6	U	6.20	93	6,20	0,00	22	G	0.99	14	0,93	0,06
7	Т	6.04	107	7,13	-1,09	23	Â	0.91	15	1,00	-0,09
8	С	5.28	74	4,93	0,35	24	Ζ	0.71	8	0,53	0,18

Results of data set evaluation

Table 4

STUDIA UNIVERSITATIS

#	1	2	3	4	5	#	1	2	3	4	5
9	L	4.48	89	5,93	-1,45	25	Н	0.47	3	0,20	0,27
10	S	4.40	56	3,73	0,67	26	J	0.24	3	0,20	0,04
11	0	4.07	58	3,87	0,20	27	Х	0.11	4	0,27	-0,16
12	Ă	4.06	68	4,53	-0,47	28	Κ	0.11	0	0,00	0,11
13	D	3.45	49	3,27	0,18	29	Y	0.07	1	0,07	0,00
14	Р	3.18	46	3,07	0,11	30	W	0.03	1	0,07	-0,04
15	Μ	3.10	40	2,67	0,43	31	Q	0.00	0	0,00	0,00
16	Ş	1.55	24	1,60	-0,05						

Revistă științifică a Universității de Stat din Moldova, 2008, nr.3(13)

Conclusion

Depending on assessment goals, different methods can be used. Logotom tests can help in assessment of TTS segmental intelligibility. *Segmental* intelligibility is measured, it means that attention is focused on intelligibility of sounds occurred within a word, be it initial, middle or final position of sound in a word. Quality of consonants in initial and final positions is the most important. Words are semantically unpredictable and therefore a listener is not likely to guess unintelligible sounds. Naturalness is not measured.

A logotom test model for Romanian language was presented. It statistically represents letter occurrences in Romanian, so that each letter would be tested according to its frequency in the language.

Repherences:

- 1. Egan J. Articulation testing methods // Laryngoscope. 1948. No58. P.955-991.
- 2. Fairbanks G. Test of phonemic differentiation: The rhyme test // Journal of the Acoustical Society of America. 1958. No30(7).
- 3. Goldstein M. Classification of methods used for assessment of text-to-speech systems according to the demands placed on the listener // Speech communication. 1995. No16. P.225-244.
- 4. Hartikainen M., Salonen E.P., Turunen M. Subjective Evaluation of Spoken Dialogue Systems Using SERVQUAL Method. In: Proceedings of ICSLP, 2004, p.2273-2276.
- 5. ITU-T Recommendation. Telephone transmission quality subjective opinion tests. A method for subjective performance assessment of the quality of speech voice output devices, 1994, p.85.
- Ojala T. Auditory Quality Evaluation of Present Finnish Text-to-Speech Systems. Sähkö ja tietoliikennetekniikka // Electrical and Communications Engineering. June, 2006.
- Schroeter J. The Fundamentals of Text-to-Speech Synthesis // IEEE-ISTO Voice XML Review. Vol.1. Iss.3. -2001.
- 8. Tatham M., Morton K. Developments in Speech Synthesis. Wiley, 2005. 356 p.
- Viswanathan M., and Viswanathan M. Measuring speech quality for text-to-speech systems: development and assessment of a modified mean opinion score (MOS) scale // Computer, Speech and Language. - Vol.19. - 2005. -P.55-83.
- Vlad A., Mitrea A., and Mitrea M. Two frequency-rank laws for letters in printed Romanian // Procesamiento del Lenguaje Natural. - 2000. - No26. - P.147-153.

Prezentat la 28.03.2008