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OPTIMUM DESIGNING OF ANISOTROPIC ROUND PLATES  

WITH RESPECT TO EIGENVALUES 

Liubovi TRIFANOVA  

Centrul de Tehnologii Informationale 
 
Se cercetează problema de proiectare a plăcilor anizotropice rotunde fixate pe contur cu valoarea maximală (minimală) 

a frecvenţei transversale libere. Au fost examinate două cazuri de fixare: placă simplu rezemată şi placă rezemată rigid 
pe contur. Optimizarea a fost  realizată folosind metodele numerice. 

 
The problem of designing fibre-reinforced  round fixed plates with maximum (minimum) fundamental frequency of 

free transverse vibrations is considered. Two aspects of fixing are considered: simply supported plate and rigidly clamped 
plate. Optimization was performed using numerical approach.  

 
 
Problem definition 
Let us consider a round fixed anisotropic plate of radius R, whose fixing does not break symmetry of the 

plate. We refer the plate to a polar coordinate system θ,r  whose origin coincides with the centre of the plate. 
Bending strains of the plate can be described by function of displacement )t,,r(w θ . For simple harmonic 
vibration we have tie),r(w)t,,r(w ϖθ=θ 0 , where ),r(w θ0  amplitude values of displacement (later  the 
index 0 will be omitted).  Anisotropic properties will be described by distribution of  angle )r(ϕ  between 
the  first anisotropy axis and axis r  of  coordinate system.   

For radial-symmetrical distributions of angle )r(ϕ  the problem about free oscillations of the round plate 
can be reduced to the one-dimensional. In particular, for rotationally symmetric oscillation the displacement 
of the plate is described by rotationally symmetric function )r(w . Components of a strain tensor in polar 
coordinates  are given by expressions [1]:  
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According to a principle of the Rayleigh fundamental frequency can be written in the form [2]:  
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where the potential energy of a strain is given by  relation  
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)(D),(D),(D ϕϕϕ 221211 - coefficients of an anisotropy, which are dependent  on required function )r(ϕ : 
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where 321 D,D,D are constants which  can be expressed  in terms of orthotropy constants as:  
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The kinetic energy of an oscillating plate is determined as follows [3]:  
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where h,ρ  - a denseness and width of the plate. 
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From a necessary condition of minimum of the functional (2) 02 =ϕδω )( , we will obtain the equation 
of the free rotationally symmetric oscillations of a round plate and boundary conditions for function of dis-
placement: 
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At centre of a plate for all requirements of fixing displacement obeys 
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for rigidly clamped plate when Rr = : 
00 == )R(w,)R(w r   (9) 

Boundary conditions for simply supported plate are : 
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The problem of optimization is formulated as follows: to find distribution of anisotropy angle )r(ϕ  for 
which fundamental frequency (2) obtains maximum (minimum) value: 

ϕϕ
→ϕωϕ min)(max)(:)r(* 2   (11) 

Optimum distribution of anisotropy angle )r(*ϕ  was seeking in the class of rotationally symmetric  
functions in the assumption, that the fundamental oscillation frequency is simple and the eigen-function is 
rotationally symmetric. 

 
Discretization of a problem of optimum designing. 
The problem formulated above was solved numerically. Spectrum of free oscillations was found using the 

variation-difference method. According to this method the range of integration was divided into n intervals 
of equal length by points n,i,n/Rh,ihri 0=== .  Integral expressions for potential and a kinetic energy 
were approximated using quadrature formula  of   trapezoid: 
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where 11
20 −==== n,i,ha,haa in  and by if  is denoted the denseness of a potential energy in the 

point ir : 
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i=1,2, … n 
where iϕ - a value of distribution of  anisotropy angle in the  point ir . 

Derivatives in the given expression were substituted by finite-difference approximations of the second 
order of accuracy. As a result following approximate expressions for eigenvalues has been obtained 

)w,w,w(}{,
war

})]{k}[{ar
min)( iii

t
i

i
iii

n

i
ii

it
iii

w 11

0

2

02
+−

=

= =δ
δϕδ

=ϕω

∑

∑ r

rr

r
r ,   (14) 

Where )w,....w,w(w n10=
r

- is the vector of displacements, ),..,( nϕϕϕ=ϕ 21
r

is the vector of distributions 

of anisotropy angle, )](k[ i
i ϕ - the symmetrical matrix, which elements can be calculated using expressions: 
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Let's write expression (14) as  
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Where [K] - a symmetrical matrix obtained as a result of assembling matrixes ]k[ i , [M] a diagonal 
matrix with elements iiii ar]M[ = . 

By writing a condition of minimum for )(ϕω
r2 : n,i,
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, we’ll obtain algebraic problem on 

eigenvalues 
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The problem of optimization will consist of computing the vector n,i},{ i 0=ϕ=ϕ
r

which supplies an 
extremum to the basic eigenvalue (17). 

The method of sequential optimization has been applied to solve this problem. According to this method 
were defined the improving variations of fundamental frequency:  
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For simple eigenvalues gradient was calculated by formula 
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And the new approximation was given by: 
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Numerical solution of the problem of optimum designing 
Numerical calculations were performed for locally-orthotropic round plates of radius r=1  with coefficients  

of ortothotropy 25008061311 21121221 ,,,,/G,/E,E =ν=ν=== . The radius of the plate was divided 
into 100 segments. For analysis of dependence of fundamental frequency on  distribution of  anisotropy angle 
were performed calculations  for a case of constant distribution of  anisotropy angle. The calculations have 
displayed considerable sensitivity of fundamental frequency to modifications of parameters of optimization. 
Below in the table 1 are given the values of quadrates of fundamental frequency for some distribution of 
anisotropy angle for simply supported plate. 

Table 1 

Eigenvalues of the free transverse vibrations anisotropic round simply supported plate 

Angle of an anisotropy )r(ϕ  Quadrate of fundamental frequency 2ω  
π/2 1,35864 
π/3 1,26290 
π/4 1,14346 
π/6 1,00854 
0 0,87076 
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For the optimum solution the value of quadrate of fundamental frequency is 1,38175.  
Fibre orientations  for  simply supported plate are given on fig 1. On the left is presented fibre orientation 

with maximum value of fundamental frequency. We can see two different zones of reinforcement. First zone 
is characterized by constant fibre orientation  2/)r( π=ϕ . The transition from this zone to the second zone 
takes place at r=0.7.  On the right is given fibre orientation that minimizes  fundamental frequency. In this 
case fibers are oriented along radius of the plate 0=ϕ . 

1 2  
Fig.1. Optimum fiber orientations for simply supported round plate. 

 
Below in table 2 are given results  of parametric calculations for rigidly clamped plate.  

Table 2 
Eigenvalues of the free transverse vibrations of anisotropic round rigidly clamped plate 

)r(ϕ  2ω  
π/2 4,28719 
π/3 4,24314 
π/4 4,6296 
π/6 5,59858 
0 6,5857 

 
For the optimum solution maximal value of quadrate of fundamental frequency 665572 ,=ω . The optimum 

fiber orientation is presented on fig. 2 – first image. Calculations were also performed to find fiber orientation 
with a minimum value of fundamental frequency. The solution is presented on fig. 2 - 2 image. The value of 
frequency quadrate is 357232 ,=ω .  

1 2  
Fig.2. Optimum fiber orientations for rigidly clamped plate. 
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