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DECOMPOSITION OF OPTIMUM DESIGN PROBLEMS 

Nadejda TRIFANOVA  

Centrul de Tehnologii Informaţionale 
 
În lucrare sunt prezentate rezultalele rezolvării problemei de optimizare a forţei critice de pierdere a stabilităţii placii 

ortotropice prin alegerea raţională a unghiului de ortotropie )y,x(ϕ . Se cercetează placa ortotropică din sticlă-plastic 
rezemată rigid solicitată cu forţele externe de compresiune la contur. Se presupune că direcţia forţelor aplicate nu se 
schimbă în procesul deformării.  Din cauza simetriei, problema a fost rezolvată prin metoda de decompoziţie. 

 
 
Introduction 
Among a variety of systems the symmetrical ones occupy an important place. The symmetry of a system 

greatly influences on  the system's properties. For example, the symmetry of the mechanical system defines 
the specificity of structure of free oscillations frequency spectrum, buckling loads, formation of optimal solu-
tions. Symmetry  means an  intrinsic property of a mathematical object which causes it to remain invariant 
under certain classes of transformations (such as rotation, reflection, inversion, or more abstract operations)  
Thus, the square is invariant to rotations on angles divisible by 90 and operations of reflection along the 
straight lines which join the middle points of opposite sides, and along  diagonals of square. The mathema-
tical study of symmetry is systematized and formalized in d group theory. 

The analysis of properties of the symmetrical  problem of optimization  allows to make its decomposition, 
i.e. replace the original problem with the series of subtasks (classes), defined on some subregion 0Ω  (called 
an elementary cell) of definition range of the initial problem. That is especially important in numerical calcu-
lations  of the problem of optimization as it allows to reduce considerably the dimensions of arrays obtained 
at the stage of discretization  and to decrease the  computational resources. Also we can obtain optimal solu-
tion properties at the phase of analysis before solving the problem of optimization.  

We shall note, that the elementary cell 0Ω  contains new parts of boundary, on fig.1 denote through 
00
yd ,ΓΓ  Obtaining boundary conditions on new parts of domain boundaries 0Ω  therefore, is obviously im-

portant. Group theory and representation theory was applied for the analysis of the symmetric structures and 
obtaining boundary conditions. 

In the suggested article the behavior of the elastic orthotropic plate loaded with compressing forces, 
applied to exterior contour of the plate is investigated. The direction of the exterior loadings does not vary 
during deformation. Anisotropic properties of the plate are described by function )y,x(ϕ - an angle between 
axes of orthotropy in the point with coordinates )y,x(  and axes of fixed co-ordinates connected with the plate. 
Applied loadings vary proportionally to parameter λ  and at some value of this parameter called critical, a 
flat plate loses its stability, buckles and accepts the curved form described by function )y,x(w  )y,x(w - 
displacement from plane). Critical buckling loads of an anisotropic plate, alongside with other mechanical 
and geometrical characteristics, considerably depend on the distribution of anisotropy angle. The design 
problem of the orthotropic plate with extreme value of critical buckling load with respect to anisotropy angle 

)y,x(ϕ  is examined. 

Mathematical formulation of the problem of optimization 
Critical buckling load can be determined from condition of functional minimum [1]: 

w
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where )w,(V ϕ - denseness of potential energy of bend deformation, )w,(A ϕ - denseness of work of external 
forces, )y,x(w - the bend of the plate at its buckling, Ω - area occupied by the plate. 
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The denseness of potential energy of lateral bending of orthotropic plate and  denseness of work of 
applied forces at lateral deformation are determined as: 
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where )(hN),(hN),(hN yyyyxyxyxxxx ϕσ=ϕσ=ϕσ= 000000 , h – width of the plate, )(),(),( yyxyxx ϕσϕσϕσ 000  – 

components of stress tensor of the plate caused by exterior loads, corresponded to value 1=λ , )(Dij ϕ  – 

bending rigidities of the plate. Components of stress tensor satisfy to equilibrium equations: 
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and to the generalized Hooke's law [2] 
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Bending rigidities )(Dij ϕ  are defined by expressions [3]: 
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Expressions for coefficients of orthotropy )(Aij ϕ  in the fixed co-ordinates )y,x( are analogous to for-

mulas for coefficients )(Dij ϕ with  correspondence  )(A)(D ijij ϕ→ϕ  
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where )EE(,,G,E,E 21212121121221 ν=ννν  - are the constants of the anisotropic material. The considered 
problem can be formulated in the following way: To determine the distribution of anisotropy angle for which 
critical buckling load accepts a extreme 

)y,x(
max))y,x((:)y,x(
ϕ

→ϕλϕ  (7) 
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Discretization 
The finite element method was applied for numerical solution of the problem. The plate area was divided 

on triangular elements. The function of bend )y,x(w  and the function of displacements in plane 
)y,x(v),y,x(u( are approximated with polynomials [4]. 

The finite element formulation of the problem of determination of critical buckling loads is following  
( )
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where }q{},w{ rr
 - global vectors of the nodal bending displacements and  plain displacements respectively , 

),....,(
eN
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v

 - the vector of angles of anisotropy. We consider that anisotropy angle is constant for each 

element. 
Through })]q{,(K[}],w){(K[ gизг

rrrr
ϕϕ  the global stiffness matrix and a global geometrical stiffness 

matrix of the plate correspondingly are denote. The global vector  is obtained as solution of plane problem of 
theory of elasticity 

}f{}q)]{(K[ пл
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where )](K[ пл ϕ
r

})] - global stiffness matrix of plane problem, }f{
r

- global vector of nodal loads in plane 
that correspond to  value 1=λ .  

The finite-element formulation of the problem of optimization is defined as follows: to find anisotropy  
angles ),....,,(

eN
опт ϕϕϕ=ϕ 21
r

that give  an extreme value to the functional 
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where vector }w{ r satisfies the algebraic eigenvalue problem 
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and global plane displacement vector satisfies the equations 
}f{}q){(K[ пл

rrr
=ϕ  (12) 

 
Due to the symmetry of area, loadings, boundary conditions optimum solution is searched in the class of 

the symmetrical functions )y,x(ϕ . By virtue of symmetry, the problem of determination of critical buckling 
load can be divided into 5 classes. Each of the problem is solved on elementary cell. Denote through  

x
w,

y
w

∂
∂

−=ψ
∂
∂

=θ  

Boundary conditions for these classes are: 
1 class: 0=ψ )y,x(  on 0

yΓ      )y,x()y,x( θ−=ψ on 0
dΓ   

2 class: 00 =θ= )y,x(,)y,x(w on  0
yΓ   )y,x()y,x(,)y,x(w θ=ψ= 0 on 0

dΓ   

3 class: 000 212 =ψ=θ= )y,x(,)y,x(,)y,x(w  on 0
yΓ  

)y,x()y,x(),y,x()y,x(,)y,x(w)y,x(w 212112 θ=ψψ−=θ=  on 0
dΓ  

4 class: 0=ψ )y,x( on  0
yΓ      )y,x()y,x(,)y,x(w θ=ψ= 0 on 0

dΓ  

5 class:  00 =θ= )y,x(,)y,x(w на  0
yΓ      )y,x()y,x( θ−=ψ на 0

dΓ  

Numerical solution of  the problem of optimization 
Numerical calculations have been performed for the square plate made of fiberglass plastic, rigidly 

clamped boundary, characterized by the following values of elastic modules: 321 =E/E , 6121 =G/E , 
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6121 =G/E , 83012 .=ν , 25021 .=ν , width and thickness of the plate were considered equal to 1. The 

plate was divided into 800=N  finite elements. The division scheme is shown on Fig. 1. 
 

 
Fig.1. The division scheme on triangular elements of  square plate. 

 

The optimum problem was solved by the sequential optimization method. The new approximation 1+ϕn
r

 
according to this method was obtained by the formula  

)( nnn ϕΛτ+ϕ=ϕ +

rrr
1 , (13) 

where τ - a step in the direction of gradient, )( nϕΛ
r

-the  value of gradient at the previous approximation. 
The necessary condition of the optimality is: 0=Λ  As the initial approximation of anisotropy angle was selec-
ted on the 1/8 part of plate. For selected initial approximation critical buckling load was equal to ,.81121 =λ  

the norm of gradient, calculated as ∑Λ
i

i
2  was 0.002. The obtained optimum solution   is shown on fig. 2. 

The tangent line in each point of the lines coincides with the direction of the greater orthotropy axes. For the 
optimum solution the norm of the gradient is equal 41050 −*. , and value of critical buckling 85431 .opt =λ  

For comparison we shall show respect of the optimal value of critical buckling load to  the value of 

critical buckling load for 0≡ϕ )y,x(  521
01

1 .
)(
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=
≡ϕλ
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Fig.2. Optimum distribution of anisotropy angle for the rigidly clamped boundary plate. 

Thus, the distribution of the anisotropy angle essentially affects the critical buckling load. 
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