Revistă științifică a Universității de Stat din Moldova, 2011, nr.7(47)

ВНУТРИМОЛЕКУЛЯРНЫЙ ПЕРЕНОС ЗАРЯДА В ТРИМЕРНЫХ СИСТЕМАХ СМЕШАННОЙ ВАЛЕНТНОСТИ: ДИНАМИЧЕСКОЕ РАССМОТРЕНИЕ

Сергей БОЛДЫРЕВ

НИЛ физики и инженерии наноматериалов и синергетики им. Е.П. Покатилова

A fost soluționată problema vibronică dinamică pentru valorile și funcțiile proprii ale sistemului trimeric cu valență mixtă. A fost cercetată detaliat banda de transfer a sarcinii în cazul legăturii vibronice slabe, intermediare și puternice. Se arată că analiza Hush utilizată pentru banda de transfer a sarcinii furnizează rezultate reale pentru parametrii interacțiunilor vibronice și electronice.

The dynamical vibronic problem for eigenvalues and eigenfunctions of the trimeric mixed-valence system was solved. The inter-valence charge-transfer (IVCT) band was examined in detail in the cases of weak, intermediate and strong vibronic coupling. It was shown that the Hush-type analysis of the IVCT band gives reliable values for parameters of vibronic and electronic coupling.

Введение

Перенос электрона играет фундаментальную роль в биологических, физических и химических системах [1]. Системы смешанной валентности (СВ), состоящие из двух и более ионов в различных валентных состояниях, являются простейшими моделями для изучения процессов внутримолекулярного переноса заряда. Системы СВ являются объектом интенсивного исследования вследствие их необычных нелинейных оптических и магнитных свойств и их потенциального применения в молекулярной электронике и фотонике.

В [2] в квазиклассическом приближении была исследована полоса переноса заряда в тримерной системе СВ и получены аналитические выражения

$$\Omega_m = 2\lambda^2$$

$$\Delta_{\frac{1}{2}} = \sqrt{16kT\Omega_m \ell n^2}$$

$$\varepsilon = \frac{2.05 \times 10^{-2} [M_0 \Omega_m]^{\frac{1}{2}}}{\sqrt{2R}} ,$$
(1)

позволяющие по положению максимума Ω_m и интегральной интенсивности M_0 оптической полосы оценить ключевые параметры системы – константу вибронного взаимодействия λ и величину электронного межцентрового взаимодействия $\varepsilon_{,}$ а также определить верхний предел полуширины $\Delta_{1/2}$. Однако применение этих аналитических выражений к реальным физическим системам ограничено критериями применимости квазиклассического приближения: сильным вибронным взаимодействием и высокими температурами. Для определения конкретной области значений константы вибронной связи, при которых выражения (1) дают достоверные значения параметров системы, необходимо провести численные расчеты полос переноса заряда при различных значениях λ , ε и сравнить их со значениями, полученными с помощью (1).

Целью данной работы является решение динамической вибронной проблемы (вычисление энергий и соответствующих волновых функций) для тримерной системы CB.

Вибронный гамильтониан

Рассмотрим симметричную (C_{3v}) трехцентровую одноэлектронную систему. Предположим, что электрон, локализованный на одном из центров, занимает невырожденную орбиталь φ_i (i=1,2,3) и взаимодействует только с полносимметричными колебаниями Q_i (i=1,2,3) ближайшего окружения (вибронная модель Piepho-Krausz-Schatz [3]). Гамильтониан такой системы в базисе функций φ_i имеет вид:

$$\mathbf{H} = t \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + \ell \begin{pmatrix} Q_1 & 0 & 0 \\ 0 & Q_2 & 0 \\ 0 & 0 & Q_3 \end{pmatrix} + \mathbf{H}_{vib},$$
(2)

где первое слагаемое описывает взаимодействие между локализованными состояниями и отвечает за перенос электрона, второе слагаемое описывает взаимодействие электрона с колебаниями и H_{vib} есть гамильтониан гармонических колебаний. Перейдем к симметризованным волновым функциям, преобразующимся по представлениям A₁ и E группы симметрии системы (делокализованный базис)

$$\psi_{A_{1}} = \frac{1}{\sqrt{3}} (\varphi_{1} + \varphi_{2} + \varphi_{3})$$

$$\psi_{x} = \frac{1}{\sqrt{2}} (\varphi_{1} - \varphi_{2})$$

$$\psi_{y} = \frac{1}{\sqrt{6}} (\varphi_{1} + \varphi_{2} + 2\varphi_{3})$$
(3)

и к аналогичным линейным комбинациям для Q_A , Q_x , Q_y . Введём безразмерные координаты $q = 2\pi (v/h)^{\frac{1}{2}}Q$, константу вибронного взаимодействия $\lambda = (8\pi^2 h v^3)^{\frac{1}{2}}\ell$ и параметр переноса $\varepsilon = t/hv$, и тогда гамильтониан (2) в базисе функций (3) примет вид

$$\mathbf{H} = h\nu \left[\sum_{\Gamma=A,E} \left(-\frac{\partial^2}{\partial q_{\Gamma}^2} + \frac{1}{2}q_{\Gamma}^2 \right) \times \mathbf{f} + \varepsilon \begin{pmatrix} 2 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix} + \frac{\lambda}{\sqrt{3}} \begin{pmatrix} \sqrt{2}q_A & \sqrt{2}q_x & \sqrt{2}q_y\\ \sqrt{2}q_x & \sqrt{2}q_A + q_y & q_x\\ \sqrt{2}q_y & q_x & \sqrt{2}q_A - q_y \end{pmatrix} \right], \quad (4)$$

где $h\nu$ есть колебательный квант, $\hat{\mathbf{i}}$ – единичная матрица. Взаимодействие с полносимметричным колебанием q_A пропорционально единичной матрице и может быть исключено надлежащим выбором начала отсчета. Электронная часть гамильтониана (4) описывает двухуровневую систему – синглет A и дублет E с энергетической щелью $\Delta=3\varepsilon$, возникающей вследствие миграции электрона по центрам. В целом, гамильтониан (4) описывает суперпозицию эффекта и псевдоэффекта Яна-Теллера [4] – (A+E) \otimes е-задачу. Для димерных систем имеет место только псевдоэффект Яна-Теллера типа $(A_U + A_G) \otimes a_{1u}$.

Отметим, что принятая одноэлектронная модель применима только к тримерным системам типа $d^0 - d^0 - d^1$ и $d^0 - d^1 - d^1$. Вибронная проблема в многоэлектронных тримерных системах $d^n - d^n - d^{n\pm 1}$ имеет различный характер, в зависимости от числа *n*-электронов, и приводит к более сложным псевдоянтеллеровским задачам [5].

Динамическая вибронная проблема

В общем случае произвольной вибронной связи необходимо применять квантово-механические методы для вычисления вибронных состояний, описываемых гамильтонианом (4). Решение соответствующего уравнения Шредингера можно осуществить только численно. Одним из наиболее подходящих способов приведения задачи к матричной форме является использование базиса слабой связи. Точные собственные функции гамильтониана (4) могут быть представлены в виде разложения в ряд

$$\Psi_i(r,q) = \sum_{i,n} c_{i,n} \psi_i(r) \chi_n(q), \qquad (5)$$

где $\psi_i(r)$ – электронные функции (3), $\chi_n(q)$ – собственные функции двумерного гармонического осциллятора | n_x n_y>. Подставляя (5) в уравнение Шредингера с гамильтонианом (4), переходим к

STUDIA UNIVERSITATIS

Revistă științifică a Universității de Stat din Moldova, 2011, nr.7(47)

алгебраической задаче на собственные значения бесконечной матрицы. Тем не менее, если ограничиться расчетом состояний, которые находятся в ограниченной области спектра, то разложение (5) может быть ограничено конечным, но достаточно большим числом слагаемых для получения необходимой точности. С учётом состояний с числами заполнения n=n_x+n_y, размер диагонализируемой матрицы гамильтониана равен N=3(n+1)(n+2)/2. Для произвольных значений константы вибронного взаимодействия вычисление энергий и волновых функций высоковозбужденных состояний, формирующих полосу переноса заряда, сталкивается с определенными трудностями, связанными с большим размером диагонализируемой матрицы (N ~ 10⁴). В этом случае стандартные программы диагонализации матриц становятся неэффективными из-за очень большого времени расчета (десятки часов).

Для построения оптической полосы переноса заряда необходимо вычислить достаточно большое число высоковозбужденных состояний. В этом случае в (4) удобно перейти к новому базису электронных состояний Ψ_{μ} (μ =0, ±1):

$$\Psi_{0} = \Psi_{A1}, \ \Psi_{\pm} = \frac{1}{\sqrt{2}} \left(\Psi_{x} \pm i \Psi_{y} \right).$$
(6)

В этом случае матрица вибронного взаимодействия в (4) принимает вид:

$$H_{\rm vib} = h \nu \frac{2\lambda}{\sqrt{6}} \begin{pmatrix} 0 & q_{+} & q_{-} \\ q_{-} & 0 & q_{+} \\ q_{+} & q_{-} & 0 \end{pmatrix},$$
(7)

где

$$q_{\pm} = \frac{1}{\sqrt{2}} (q_x \pm i q_y).$$
 (8)

Собственные функции гамильтониана (4) будем искать в виде:

$$\Psi_{n} = \sum_{\mu,\nu,\ell} C_{\mu,\nu,\ell}^{(n)} \Psi_{\mu} \chi_{\nu,\ell} , \qquad (9)$$

где χ_{ν,ℓ} – собственные функции двумерного гармонического осциллятора, а квантовые числа ύ,ℓ принимают значения:

$$\dot{\mathbf{b}} = 0, 1, 2, \dots, \ \ell = - \ \dot{\mathbf{b}}, -\dot{\mathbf{b}} + 2, \dots, \dot{\mathbf{b}}.$$
(10)

В базисе функций (9) матрица гамильтониана (4) распадается на три блока $A(A_1,A_2)$, E_x , E_y , которые соответствуют неприводимым представлениям группы симметрии C_{3v} исследуемой системы. Такой подход сильно упрощает задачу, поскольку размеры диагонализируемых блоков в три раза меньше размера исходной матрицы. На рис. 1,2 представлены зависимости энергий нижайших вибронных состояний от константы вибронного взаимодействия λ . Полный энергетический спектр системы представляет собой суперпозицию спектров, представленных на рис. 1,2. Из рис. 1,2 видно, что при слабой и промежуточной вибронной связи ($\lambda \leq 2$) спектр носит сложный характер. В предельном случае сильной вибронной связи уровни энергии группируются и образуют эквидистантный спектр, который соответствует колебательным состояниям, локализованным в трех минимумах нижнего листа адиабатического потенциала системы [2]. Вырожденные возбужденные колебательные состояния расщепляются вследствие туннелирования системы между минимумами нижнего листа адиабатичекого потенциала, которые в пределе сильной вибронной связи разделены между минимумами нижнего листа адиабатичекого потенциала, которые в пределе сильной вибронной связи разделены достаточно высокими барьерами. Причем высоковозбужденные состояния расщепляются сильнее, так как высота барьеров для них существенно меньше.

Рис.1. Зависимость энергий вибронных состояний симметрии А от константы связи.

Рис.2. Зависимость энергий вибронных состояний симметрии Е от константы связи.

Полоса переноса заряда

Формфункция полосы переноса заряда может быть записана в следующем виде:

$$F(\Omega) = \frac{1}{N} \sum_{i,j} \left(N_i - N_j \right) \left\langle \Psi_i \left| d_x + i d_y \right| \Psi_j \right\rangle \right|^2 f(\Omega, \mathbf{E}_i, \mathbf{E}_j),$$
(11)

где E_i и Ψ_i есть энергии и волновые функции, полученные в результате решения динамической вибронной проблемы; N_i=exp(-E_i/kT) – температурная заселенность i-го вибронного состояния.

$$N = \sum_{i} N_{i}, \quad f(\Omega, E_{i}, E_{j}) = \sqrt{\frac{1}{\pi\Delta^{2}}} \exp\left[-\frac{(\Omega - E_{j} + E_{i})^{2}}{\Delta^{2}}\right]$$
(12)

есть формфункция индивидуального вибронного перехода, который аппроксимируется гауссианом с уширением Δ . Величина Δ выбиралась таким образом, чтобы функция F(Ω) была гладкой.

Для построения полосы поглощения необходимо вычислить высоковозбужденные состояния. Для достижения сходимости результатов и в зависимости от величины константы вибронной связи, размеры диагонализируемых матриц находились в пределах 4*10³ x 4*10³ – 7*10³ x 7*10³.

На рисунках 3–7 приведены полосы переноса заряда для различных значений параметра переноса ε и константы вибронной связи λ при T=300K и hv=450cm⁻¹.

При не слишком больших значениях параметра переноса | ε | \leq 5 полосы переноса имеют колоколообразную форму (рис. 3-4). При фиксированном значении ε с ростом константы вибронной связи λ положение максимума полосы смещается в высокочастотную область, не сильно отличаясь от величины $2\lambda^2$ в случае промежуточной вибронной связи (λ =3) и практически совпадая при сильной связи (λ =5;7). Это означает, что квазиклассическое приближение, в рамках которого максимум полосы поглощения совпадает с энергией вертикального перехода из минимума нижнего листа адиабатического потенциала, хорошо согласуется с результатами квантово-механических расчетов. Во всех рассмотренных случаях (рис.3-7) полуширины полос превышают соответствующие квазиклассические значения $\Delta_{1/2}^{(H)}$ (см. таблицу).

Таблица

Параметры полосы переноса заряда в единицах hv при T=300K

3ε	$\sqrt{2} \lambda$	Ω_{m}	$\Delta_{1/2}$	$\Delta_{1/2}^{(\mathrm{H})}$	M_0/e^2R^2	ε ^(H)
1	3	7,47	8,32	6,19	0,028	0,97
	5	23,48	13,48	10,98	0,009	0,98
	7	47,72	18,65	15,65	0,005	0,99

-1	3	6,84	9,12	5,92	0,033	1,01
	5	23,02	13,41	10,87	0,009	1,00
	7	46,74	18,60	15,49	0,005	0,99
5	3	9,45	9,16	6,96	0,510	4,66
	5	24,52	14,04	11,22	0,207	4,78
	7	48,23	19,14	15,74	0,110	4,89
-5	3	5,80	5,51	5,46	1,01	5,13
	5	21,68	13,66	10,55	0,263	5,06
	7	46,11	18,79	15,38	0,123	5,05
30	3	32,16	3,18	12,85	4,907	26,65
	5	40,10	9,21	14,35	4,269	27,76
	7	60,84	15,23	17,67	3,01	28,71
-30	3	29,07			9,927	36,04
	5	28,0			9,615	34,81
	7	38,4			6,373	33,18

Важной характеристикой полосы переноса является ее интегральная интенсивность. Как явствует из таблицы, при фиксированном значении є интегральная интенсивность M_0 резко убывает с ростом константы вибронной связи λ по закону $M_0 \sim 1/\lambda^2$. Этот закон хорошо выполняется для случаев при условии локализации $|\varepsilon|/\lambda^2 <<1$, при котором интенсивность полосы возрастает с увеличением параметра переноса є по квадратичному закону, что согласуется с квазиклассическим соотношением (1). На рис. 5-6 приведены полосы переноса заряда при большом значении параметра $|\varepsilon|=10$. При положительном значении ε и $\lambda=3$;5 полоса переноса расщепляется на две области: малоинтенсивную низкочастотную и интенсивную высокочастотную. Эти две области поглощения можно связать с переходами из состояний нижнего листа потенциальной поверхности на два верхних листа, энергетическая щель между которыми 2 ε является большой. Соотношение интенсивностей двух областей поглощения качественно соответствует выводам квазиклассической теории (см. формулы (36), (37) из [2]). При отрицательном значении параметра $\varepsilon = -10$ и $\lambda=3$;5 нижний лист потенциальной поверхности имеет только один минимум в точке $q_x^{(0)} = q_y^{(0)} = 0$. Основное электронное состояние A_1^- типа отделено от возбужденного E^- состояния большой энергетической щелью 3 ε . Поэтому в данном случае полоса переноса, приведенная на рис.7, качественно совпадает с известной ян-теллеровской $A \rightarrow E$ [4].

В заключение отметим тот факт, что оценка параметра переноса $\varepsilon^{(H)}$ по квазиклассическому соотношению (1) с использованием интегральной интенсивности полосы поглощения, полученной из квантовомеханических расчетов, дает очень хорошее совпадение с исходным значением ε . Из таблицы видно, что для значений $|\varepsilon| \le 5$ различие не превышает 3% даже в случае слабой вибронной связи. В случае сильного переноса $|\varepsilon| = 10$ различие составляет 4-20% в зависимости от величины константы вибронной связи. Это означает, что соотношение (1) для оценки параметра электронного взаимодействия ε по известной экспериментальной интенсивности полосы переноса заряда дает достоверные значения и имеет широкую область применения.

Литература:

- 1. Jortner J., Bixon M. // Adv. Chem. Phys., 1999, vol.106-107.
- 2. Болдырев С. Внутримолекулярный перенос заряда в тримерных системах смешанной валентности: квазиклассическое рассмотрение // Studia Universitatis: Seria Științe exacte și economice, 2010, nr.7(37), p.57-64.
- 3. Piepho S.B., Krausz E.R., Schats P.N. Vibronic coupling model for calculation of mixed-valence absorption profiles // J. Am. Chem. Soc., 1978, vol.100, p.2996-3005.
- Берсукер И.Б., Полингер В.З. Вибронные взаимодействия в молекулах и кристаллах. Москва: Наука, 1983. -336 с.
- Boldyrev S.I., Gamurar V.Ya., Tsukerblat B.S., Palii A.V. Vibronic interaction in multielectronic mixed-valence trimeric clusters // Mol. Phys., 1994, vol.81, p.621-654.

Prezentat la 09.11.2011