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Utilizând metoda celor mai mici pătrate, au fost obţinuţi parametrii interatomari ai interacţiunilor cu rază redusă de 

acţiune prin adaptarea frecvenţelor fononice măsurate de-a lungul liniilor volumetrice principale de simetrie Δ , Σ  şi Λ . 
Astfel, a fost determinat câmpul forţelor de valenţă caracterizat de şapte parametri, în care energia potenţială de defor-
maţie este compusă din şase tipuri de interacţiuni covalente. Parametrii obţinuţi pentru Si şi Ge sunt prezentaţi în tabel. 
Au fost construite spectrele energetice fononice pentru nanopeliculele cu structura diamantului având o grosime de circa 
3 nm; paralel sunt prezentate densităţile stărilor. De asemenea, utilizând legea dispersiei, au fost obţinute vitezele 
fononice de grup, cu ajutorul cărora au fost determinate dependenţele vitezelor medii de grup de energia fononică. În 
final, a fost efectuată o analiză comparativă a diferiţilor compuşi cvasibidimensionali cu grosimea cuprinsă între 3 şi 
aproape 7 nm. Pentru aceste nanostructuri a fost calculat parametrul important, care caracterizează proprietăţile fononice 
şi stabileşte conductibilitatea lor termică, şi anume: viteza medie de grup a fononilor acustici în aproximaţia undelor 
lungi. Rezultatele obţinute permit a studia în continuare heterostructurile plane şi a implementa în circuitele electronice 
nanoelementele cu factor de calitate înaltă. 

 
 
Introduction 

The importance of phonons and their interactions in bulk materials is well known to those working in  
the fields of solid-state physics, solid-state electronics, optoelectronics, heat transport, quantum electronics, 
and superconductivity. Nanodimensional structures (heterolayers, heterowires, multilayered quantum dots, 
quantum dot superlattices) at the present time are intensively studied in  leading world scientific centers. In 
laboratories of physics of multilayered structures throughout tens years are conducted researches of 
vibrational, electronic and optical properties of nanostructures. Basically works are directed on the 
investigation of properties of atomic compounds. To investigate phonon properties of such compounds is 
necessary more exact calculation of the non-Coulomb interaction with a large number of force parameters 
(two-, three-, four-particle, etc., interatomic interactions). The question naturally arises as to the effect of 
dimensional confinement on the properties on the phonons in such nanostructures as well as the properties of 
the phonon interactions in nanostructures. 

 
The theoretical model 

According to this theory a covalent bond is formed between the two atoms by the overlap of half filled 
valence atomic orbitals of each atom containing one unpaired electron [1,2]. A valence bond structure is simi-
lar to a Lewis structure, but where a single Lewis structure cannot be written, several valence bond structures 
are used. Each of these valence bond structures represents a specific Lewis structure. This combination of 
valence bond structures is the main point of resonance theory. Valence bond theory considers that the overlap-
ping atomic orbitals of the participating atoms form a chemical bond. Because of the overlapping, it is most 
probable that electrons should be in the bond region. Valence bond theory views bonds as weakly coupled 
orbitals (small overlap). Valence bond theory is typically easier to employ in ground state molecules. 

Crystals with cubic structure are of major importance in the fields of electronics and optoelectronics. 
Indeed, zincblende crystals such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs) may be 
regarded as two face-centered cubic (fcc) lattices displaced relative to each other by a vector ( / 4a , / 4a , 

/ 4a ), where a  is the size of the smallest unit of the fcc structure (Fig.1). 
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Fig.1. First two coordination groups of a lattice with the zincblende structure. 

 
In the given figure the four big blue atoms compose the first sphere of interaction relatively to the central 

atom under consideration. The remaining nine little blue atoms, together with the four previous, form the 
second Bravais sublattice. The solid black lines show radiuses of short-range interactions. The twelve yellow 
atoms belong to the second coordination group; they with the central atom compose the first Bravais 
sublattice. The dashed red lines connect the atoms of long-range interactions. Thus, shown in the figure 
atoms represent fully the investigated diamond-like nanostructures and interactions in them. 

The atom-atom force field ( )i SRV r V=r
 used here includes a short-range part SRV , which describes the 

covalent bonding [3,4]. For atom i  bonded tetrahedrally to atoms j , k  and l , the short-range interaction is 
2
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where 1rκ , 2rκ , θκ , rθκ , rrκ , 1θθκ  and 2θθκ  are short-range force constants. 0r  is the equilibrium bond 
length. The first two terms in Eq. (1) are the Stretching-interactions between examined atoms and atoms of 
first and second coordination groups, respectively, and the third term is the Bending-interaction familiar 
from the commonly used Keating’s VFF models [5-7], the next term – the coupling Stretching-Bending-
interaction, further – the Stretching-Stretching-interaction of two nearest bonds, while the remaining two 
terms describe the Bending-Bending-interactions with one and two centers, respectively. The summation 
over m  corresponds to interactions of the central atom i  with all atoms from second coordination group. 

The atomic force constants , ( , )i jρ σΦ  are obtained from the force field SRV V=  as 
2
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where ρ  and σ  label the Cartesian coordinates. The phonon frequencies 2sq sqω πν≡r r  (of branch s  and 

wave vector qr ) and eigenmodes ( )sqQ ξr

r
 of quasi-two-dimensional diamond-like nanostructures are then 

obtained by diagonalizing the dynamical matrix: 
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Here ξ  is the atomic index inside the primary cell, i.e., i lr r Rξ= +
rr r

, where lR
r

 is a lattice vector. The 

matrix element , ( ' | )D qρ σ ξξ r
 is 
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where M is the mass of atom. The displacement of atom i  corresponding to the phonon eigenmode ( )sqQ ξr

r
is 
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Thus, Valence Force Field model describes the interactions between uncharged atoms. Valence bond 
theory now complements molecular orbital theory, which does not adhere to the valence bond idea that 
electron pairs are localized between two specific atoms in a molecule but that they are distributed in sets  
of molecular orbitals which can extend over the entire molecule [8]. Molecular orbital theory can predict 
magnetic properties in a straightforward manner, while valence bond theory gives similar results but is more 
complicated. Valence bond theory views aromatic properties of molecules as due to resonance between 
Kekule, Dewar and possibly ionic structures, while molecular orbital theory views it as delocalization of the 
π-electrons. The underlying mathematics are also more complicated limiting valence bond treatment to 
relatively small molecules. On the other hand, valence bond theory provides a much more accurate picture of 
the reorganization of electronic charge that takes place when bonds are broken and formed during the course 
of a chemical reaction. In particular, valence bond theory correctly predicts the dissociation of homonuclear 
diatomic molecules into separate atoms, while simple molecular orbital theory predicts dissociation into a 
mixture of atoms and ions. 

 

Results 
As a result, it was established seven-parameter field, where the potential energy of deformation consists 

of six kinds of interatomic interactions (the Stretchings with first two coordination groups, the Bending, the 
double Stretching, the Stretching-Bending, the double Bendings with one and two centers). In the table below 
are presented the interaction parameters, obtained by solving the characteristic equation of sixth degree by 
minimizing the discrepancy of theoretical results and experimental data. Radial and angular parameters of 
the interatomic interactions are measured in different values; from the tabular numerical values it’s possible 
to determine the contribution of an interaction in phonon dispersion dependences. 

 
Table 

Seven-parameter Valence Force Field for Si and Ge (*) 

Silicon Germanium 

№ Interaction constants The numerical value № Interaction constants The numerical value 

1 
1( )r Siκ  1.303… 1 

1( )r Geκ  1.246… 

2 
2( )r Siκ  0.2460… 2 

2( )r Geκ  0.2270… 

3 
( )rr Siκ  -0.1099… 3 

( )rr Geκ  -0.1162… 

4 
( )Siθκ  0.1813… 4 

( )Geθκ  0.1811… 

5 
( )r Siθκ  0.2757… 5 

( )r Geθκ  0.3035… 

6 
1 ( )Siθθκ  1.685… · 10-3 6 

1 ( )Geθθκ  1.954… · 10-3 

7 
2 ( )Siθθκ  0.1071… 7 

2 ( )Geθθκ  0.1079… 

(*) Units: the Stretching and the Stretching-Stretching force constants are expressed in mdynes/Å, the Bendings and the 
Bending-Bending in mdyne·Å/rad2, the Stretching-Bending in mdyne/rad. Ellipsis indicates that in the calculations were 
used and other significant numerals. 



Seria “{tiin\e exacte [i economice” 

Fizic=                                   ISSN 1857-2073 
 

 91

For estimation of conformity degree of the theory to experiment were calculated phonon dispersions 
along the main symmetry lines of investigated crystal diamond-like structure (directions XΓ→ , KΓ→ , 
and LΓ→  in the Brillouin zone). Here we represent phonon energy spectra only along the main crystallo-
graphic direction 100 for bulk Si and Ge 
(Fig.2), because the results presented below 
(Fig.3,4) for planar nanostructures will corres-
pond exactly to this direction. It’s necessary to 
note that the inclusion of the four-particle 
Bending-Bending-interactions with one and two 
centers in addition to the two- and three-particle 
Stretching-, Bending-, Stretching-Bending- and 
Stretching-Stretching-interactions appears 
useful, since theoretically obtained phonon 
dispersion dependences began to describe more 
precisely experimental results. The account of 
many kinds of interatomic interactions with a 
large number of force parameters allows  to 
describe more precisely phonon properties of 
planar nanostructures, wires, etc., that gives to 
this direction of researches necessary novelty. 

We also explain that in Fig.2 the solid lines 
show double-degenerate dispersion depen-
dences (they describe transverse vibrations), 
while the dashed lines mark once degenerate 
curves of longitudinal vibrations. 

 

   
 

Fig.3,4. Phonon energy spectra for Si (the left figure) and Ge (the right figure) slabs with thickness of 24 monolayers 
along the main symmetry line (direction 100). 

 
More visual representation of the phonon energy spectra (Fig.3,4) give the density of states shown in 

Fig.5. For example, for Si film we see three distinct peaks in the regions of 22, 50 and 60 meV. These peaks 
characterize the transverse acoustic, longitudinal acoustic and optical, and transverse optical vibrations, 
respectively. 

Fig.2. Experimental and calculated dispersion curves along 
the direction XΓ→  for bulk Si (black) and Ge (red) 

crystals. 
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In Fig.6,7 are shown phonon group velo-
cities obtained from the dispersion law. It’s 
visible that in the Si film with thickness of 
3.11 nm phonons possess velocities in the 
interval approximately from -3 to 7 km/s, but 
the Ge film with thickness of 3.25 nm phonon 
velocities vary from -2 to 4.5 km/s. Hence 
quanta of vibrational motion of atoms are 
characterized by higher velocities in Si slabs 
that should cause an increase of heat conducti-
vity in these nanostructures in comparison 
with similar Ge compounds. 

Were also calculated average phonon 
group velocities for nanoslabs with thickness 
of 24 monolayers (ML). In Fig.8 are presen-
ted the dependences of these velocities on the 
phonon energy; the obtained curves give the 
resulting picture from all branches of group 
velocities from Fig.6,7. We see that for the 
phonons with zero energy their average pho-
non group velocities constitute 4.856 km/s 
for Si nanofilm with thickness of 3.11 nm 

and 2.849 km/s in the case of 3.25 nm Ge quasi-two-dimensional nanostructure. At the same time, these 
velocities of phonons with energies approximately 37 meV for the corresponding Ge nanocompound (and 
with energies around 64 meV for Si) reduce to zero. 

 

   
 

Fig.6,7. Phonon group velocities for Si (the left figure) and Ge (the right figure) slabs  
(geometrical characteristics as in Fig.3,4). 

 
Finally, for the comparative analysis has been defined an important parameter characterizing phonon 

properties (the average group velocity of acoustic phonons in the long-wave approximation) in planar nano-
structures with different thicknesses: 36 and 48 ML, in addition to 24 ML. So, in the case of Si, this value is 
equal to 4.941 km/s (thickness 4.74 nm) and 5.034 km/s (6.36 nm), and for Ge is 2.899 km/s (4.95 nm) and 
2.965 km/s (6.64 nm). It’s seen that at the increase in thickness of homogeneous nanodimensional films 
increases the average group velocity of acoustic phonons in the long-wave approximation, which is caused 

 

Fig.5. Phonon densities of states for Si (the black curve)  
and Ge (the red curve) slabs (geometrical characteristicsas  

in Fig.3,4). 
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Fig.8. Average phonon group velocities for Si  
(the black curve) and Ge (the red curve) slabs  

(geometrical characteristics as in Fig.3,4). 

by the increase in channel of heat extraction. 
These values reach 5.239 km/s in the case of 
bulk Si and 3.152 km/s for Ge. At the further 
studying of phonon properties in hetero-
structures, we can choose those or other 
combinations of materials for increase or 
decrease of heat conductivity in them that is the 
important factor at implementation of 
nanoelements, for example, in electronic circuits. 

In summary we will note that application of 
Valence Force Field model has allowed to repro-
duce with high precision experimental dispersion 
dependences and to find a set of interatomic 
interaction parameters used in the given article 
for determination of the fundamental physical 
values, which characterize lattice dynamics 
(phonon energy spectra, group velocities, densi-
ties of states, etc.). These results will be necessary 
further for calculation of some kinetic coefficient 
(including heat conductivity) quasi-two-dimen-
sional and other spatially limited nanostructures. 
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