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Kondo effect, saturation magnetization and heat capacity of ferromagnetic are calculated from the first principles in 

the spirit of Landau’s Fermi-liquid theory. Temperature dependence of resistivity of metal with magnetic impurity is 

obtained in a good agreement with existing experimental data. Resistance curves demonstrate a minimum due to the 

resonance character of the interaction between spins of the localized and conduction electrons. It has been demonstrated 

that both temperature dependence of magnetic momentum and internal energy of ferromagnetic are in a good agreement 

with those predicted by the Heisenberg’s model.  
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METODA FERMI-LICHID MICROSCOPICĂ PENTRU EFECTELE DE REZONANȚĂ A 

INTERACȚIUNII SPIN-ORBITE ÎN SUBSTANȚELE SOLIDE 

Efectul Kondo, magnetizarea de saturație și căldura specifică a unui feromagnet sunt calculate folosind principiile 

fundamentale în spiritul teoriei Fermi-lichid Landau. Dependența de temperatură a rezistenței  metalului cu impurități 

magnetice este în concordanță cu experimentul. Rezistența minimă este legată de natura rezonantă a interacțiunii unui 

electron de conducție cu un electron localizat. Se arată că dependența de temperatură a momentului magnetic și energia 

interioară este în bună concordanță cu modelul Heisenberg. 

Cuvinte-cheie: Efect Kondo, magnetizare de saturaţie, magnon, capacitate termică, feromagnetic.  

 

 

Introduction 

Heisenberg model [1,2] play an important role in quantum theory of magnetism. Heisenberg effective 

spin-Hamiltonian in which the non-relativistic exchange interaction is expressed as a spin-spin interaction 

allowed explaining many experimental results. The temperature dependence of the heat capacity and the 

saturation magnetization of the ferromagnetic cannot be understood without involvement of the concept of spin 

waves into the consideration. In our previous work [3] it was found from the first principles that the spin-orbit 

interaction is important for understanding the temperature dependence of the magnetic moment and the internal 

energy of a ferromagnet. In this paper, we calculate the temperature corrections to the model results using the 

developed approach [3].The constant of the spin-Hamiltonian is the sum of contributions of the exchange 

and the spin-orbit interaction, which is usually neglected. But the spin-orbit interaction in resonant cases [3] 

can provide a compatible with exchange contribution.  

This work is devoted to study of the Kondo effect, saturation magnetization and heat capacity of the ferro-

magnetic at low temperature from the first principles in the spirit of Landau theory of Fermi-liquid. Comparison 

of obtained results and known results of model theory [1, 2] are performed.  

1. General consideration 

Investigation of electron and phonon properties of solids is based on various theoretical models [3-8]. In 

the paper [3], we have obtained a Hartree-Fock equation for the energy spectrum of electrons with account of 

the correlations of the charge density [5,8] and with account the spin-orbit interaction in the framework of 

the calculation of the average value  

nmmn aaP , where nm aa ,
 creation and annihilation operators of 

electrons. Electrical resistance, magnetization and internal energy of ferromagnetic is dependent on the value 

of the  

nmmn aaP , which in thermal equilibrium is represented as a series in powers of fluctuations 

)(V  about the average value 0)(  V given in the interaction picture. All designations in this paper 

are the same as introduced in the work [3]. To avoid Coulomb divergence one may sum up diverging terms 

or use the fluctuation-dissipation theorem and find the next result for mnP  [3]. 
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The value  
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,

 is in accordance with Landau Fermi liquid theory.  Landau theory of Fermi-

liquid is founded on the representation about the quasiparticles and equation nnn  0 . Second term in 

Eq.(1) is equal to zero due to the  Hartree-Fock equation for the energy spectrum of quasiparticles [3]. Cor-

rection n  to the Fermi-Dirac distribution 0n is in terms of ),( qG Eq.(1). We calculate function ),( qG  

by taking into account two components of the Coulomb interaction   ,2/
~ T
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  as the 

perturbation. These terms lead to the Coulomb divergences, and should be taken into the consideration for 

example by using the random phase approximation. Carrying out the simple decoupling the retarded Green's 

function ),( qG  can be evaluated   
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by taking the spin-orbit interaction into the consideration. Averaging with using the equilibrium density matrix 

of the quasiparticles with Hamiltonian qjqj
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Electrons interact with quasiparticles, which spectrum is determined by the poles of the ),( qG .  
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Two-band approximation leads to the formula    mkk nl 2/
22

lnln  . In accordance with the Hubbard 

model [9], we assume that initial state n is discrete energy level state, and l  state is the band state. Magnons 

frequencies are lower than the electron transition frequency ln . It was established [3] that magnon dispersion 

law is determined by the electron state l energy band structure. Thus for magnon frequency one finds the 

next expression 
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An energy band of bulk semiconductors dispersion law at low momentum is quadratic Eq.(5). However, 

in low-dimensional semiconductors magnons may have a different dispersion law. So magnons in the doped 

graphene lattice Kondo must have a linear dispersion law.  

2. Resonant effects of spin-orbit interaction in solids 

Using equation (1) it can be obtained that a non-zero contribution of the temperature correction to the 

saturation magnetization )()0()( TMMTM   is determined by the transitions with spin flip due to the 

spin-orbit coupling 
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The factor 2

ln )( q
 in the resonance conditions gives rise to contribution enhance of the processes 

of inelastic scattering of electrons with spin flip in the absorption of magnons. As a result of the calculation 

performed, the temperature correction for the saturation magnetization is expressed by the next equation 

     )()1)()(1(,/)(2/])(exp[11)()(2)( 1

lnqln

q

qB

q
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Equation (7) is identical to that in the model theory of magnons [1,2] at low temperature 0T , when 

11)( qn  and   Tkq Bq /,1)(exp[   . Similarly we calculate the magnon contribution to 
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the electronic internal energy of a ferromagnetic  

l

llle aaU  . Using the formula (1), one gets 

the next ab-initio result 
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At low temperature and at 0,2/)( 2  mqq   we obtain that 2/32/52/3 ,, TCTUTM V   in 

accordance with Holstein-Primakov theory [1,2]. Factor     ])(exp[11)( qn qq    in equations (7,8) 

changes the magnitudes of UM  , . Finally, the calculated temperature correction M (Bloch 2/3T law (7)) 

together with results for the magnon dispersion law (5) and the heat capacity of ferromagnetic are in agreement 

with the Heisenberg model [1,2]. 

Resistance minimum of metals with magnetic impurities is connected with the interaction between spins of 

the localized and conduction electrons in the exchange model [10]. We consider Kondo effect with account 

of spin-orbit coupling from the first principles. According to the standard theory, conductivity is determined 

by the equation 
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Here )(k -is transport relaxation time. According to the Eq.(9), conductivity is dependent on the 
kkk ddP / . 

But kkP  (1) deviates from the standard Fermi-Dirac distribution. With account of correlation in thermal equi-

librium, distribution function  

kkkk aaP  has the next form 
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Sum over l includes impurity states; k subscript denotes the quantum numbers sets of conduction electrons. 

Let us first consider the case when impurity level with energy l is below the Fermi level and inequality 
kl    

is satisfied. Hence )(2/2 kmkkl     In this case dispersion law of the lattice Kondo magnon is 

determined by the equation (5). Integrating over  with account of magnon absorption and emission processes 

at low temperature one gets 
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Using results obtained, inserting the equation (11) into (9) we can calculate the temperature dependence of 

resistivity )(T in units of )0( with account of absorptions and emissions of magnons at the Fermi surface 

in the lattice of Kondo. Introducing the next designations  
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Where C is the concentration of impurities in arbitrary units. Term 
5AT shows the contribution from the acoustic 

vibrations. Equation (12) do not changes and in the case when impurity level with energy l is above the Fermi 

level. But in that case )(2/2 kmklk    , and     )(exp[11)()( qnnnP qkkkkk   .  

Contribution into the transport relaxation time )(k  due to the electron scattering by collisions with magnons is 

negligible )()()(/1 FFFSO kfkk   . Really, making use of equation (1) with account of damping kl  we 

obtain   2/1
)/()]()(21[2))(()( klklkkkl nnnnnkk   . Here function )( Fkf is determined in Eq. (5). 
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Fig.1. Temperature dependence of resistivity )0(/)(  T (12) for different values of concentration C. 

 

In Figure 1 there are represented results of resistivity calculation generated by equation (12) for different 

values of concentrations and magnon frequencies. Temperature dependence of resistivity of metal with mag-

netic impurity is in accordance with experiment. Resistance minimum is related to the resonance character of 

the interaction between spins of the localized and conduction electrons. The results obtained reflect the Abri-

kosov-Shul aka Kondo resonance character of the spin-flip scattering transitions due to the spin-orbit coupling. 
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