
S TUD I A UN IVER S I T AT I S MOLDAV I A E , 2018, nr.2(112)

Seria “{tiin\e exacte [i economice” ISSN 1857-2073 ISSN online 2345-1033 p.26-30

26

CZU: 517.9:519.6

CODE GENERATION DSL FOR EMBEDDED ACTOR-ORIENTED SYSTEMS

Evgheni TOLMACI

Universitatea de Stat din Moldova

Over the last decades embedded software is becoming more complex and more distributed. Fuelled by revolution of

Internet of Things (IoT) the global embedded market is constantly growing and is predicted to accelerate its growth. At
the same time the embedded software is demanding the new solutions to still open problems, such as higher modulariza-
tion, platform independency and optimized research and development (R&D) process.

This paper proposes a solution for the problems enumerated above. It presents a new Domain-Specific Language
(DSL) for an automated generation of embedded actor-oriented systems. Its purpose is to generate the code for different
platforms using the same modules and configuration files. It achieves the main goal by decoupling the modules, the
configuration files and the platform from each other.

Keywords: actor, message broker, message-oriented middleware (MOM), process scheduler, domain specific lan-
guage (DSL), actor-oriented software, embedded software, Internet of Things.

DSL PENTRU GENERAREA CODULUI ACTOR-ORIENTAT PENTRU SISTEME ÎNCORPORATE

În ultimele decenii software-ul încorporat devine mai complex și mai distribuit. Datorită revoluției internetului
obiectelor (IoT), piața globală este în continuă creștere și se preconizează că creșterea economică va accelera în viitor.
În același timp, software-ul încorporat are nevoie de soluții noi pentru rezolvarea problemelor deschise: modularizarea
mai înaltă, independența de platformă și optimizarea procesului de R&D.

În acest articol se propune o soluție pentru rezolvarea problemelor enumerate mai sus. El prezintă un nou limbaj de
programare (DSL) pentru generarea software-ului încorporat actor-orientat. Scopul lui este generarea codului pentru
diferite platforme utilizând aceleași module și fișiere de configurare. Această lucrare realizează obiectivul principal prin
decuplarea modulelor, fișierelor de configurare și platformelor încorporate.

Cuvinte-cheie: actor, broker de mesaje, software integrator mesaj-orientat, planificator de procese, limbaj specific
domeniului, software-ul actor-orientat, software-ul încorporat, Internetul Obiectelor.

Introduction

The embedded software industry is relatively young. It emerged with the appearance of the computers

and personal portable gadgets. The global market of embedded software is expected to grow from US ~$10
Billion in 2016 to US~$ 19 Billion by 2022. The average compound annual growth rate is expected to be

approximately 9% [1]. At the same time Internet of Things (IoT) makes its own revolution driven by relati-
vely cheap hardware and increasing connectivity. The global impact of the IoT as a part of digital landscape

is predicted to reach ~$11 trillion [2].
A significant share of IoT is driven by embedded software which in many cases is platform-specific. So

in order to reuse the already implemented logic, the source code needs to be recompiled or reconfigured
depending on embedded platform. In some other cases the source codes for different platforms are not even

compatible, so they may require deeper intervention in order to adjust and customize the code.
The goal of this article is to optimize the customization process by the creation of a domain specific

language (DSL) for generating the platform-specific code.

1. Embedded Actor Oriented Software

The embedded actor-oriented software consists of three main components: actors, a message broker (one

or many) and a process scheduler.
Actors are well encapsulated active objects which can communicate to each other by sending asynchronous

messages. These computational entities in response to messages they receive, can do concurrently the follo-
wing actions: send finite number of messages to other actors, create finite number of new actors, change their

internal state, change their future behaviour on receiving other messages [3,4]. The sequence of message
delivery and message handling is not guaranteed and some actions could be performed in parallel [3]. So the

architecture of an actor-oriented system should assume these concepts and adopt the "everything is an actor"
philosophy.

S TUD I A UN IVER S I T AT I S MOLDAV I A E , 2018, nr.2(112)

Seria “{tiin\e exacte [i economice” ISSN 1857-2073 ISSN online 2345-1033 p.26-30

27

A message broker is an intermediary software module. It is a key component of message-oriented middle-

ware pattern (MOM). The main responsibilities of a message broker are validation, translation and routing of

messages between different components of a loosely coupled system. It acts as a mediator among applica-

tions, decoupling the components from each other. The implementation of message brokers is based on one

of two architectural patterns: hub-and-spoke or message bus [5,6].

Process scheduler is another main component of an actor based embedded software. It aims to achieve

some of the goals [7]:

 Maximizing throughput (the amount of processes executed per time unit)

 Minimizing waiting time (the time a process needs to wait once it has been created until it starts being

processing)

 Minimizing latency (the time a process needs for completion starting from creation time)

 Maximizing fairness (fair CPU sharing according to the priorities of the processes)

 Meeting the deadlines (has very high importance for embedded systems)

There are four well known and widely used scheduling architectures (sorted in order of increasing com-

plexity): Simple Round Robin, Round Robin with Interrupts, Round Robin with Interrupts and Function

Queues, Real-time Operating System (RTOS). On the one hand the rule of thumb is to choose the simplest

one that meets the requirements. Extra complexity will lead to undesirable waste of time during development

and maintenance. On the other hand it may cause performance issues [8,9].

2. The Concept

The actors by definition are atomic computation units (from encapsulation point of view). They can be

easily standardized, modularized and extracted into reusable libraries/modules. At the same time the process

schedulers and the message brokers are another target of standardization, being highly reusable. Thus the

implementation of actor-oriented software can be reduced to definition of a custom main controller which

will be responsible for the following logic:

 Import of reusable actor libraries/modules

 Import of a reusable message broker library/ modules

 Import of a reusable process scheduler library/ modules

 Initialization and configuration of initial actors

 Initialization and configuration of the message broker

 Initialization and configuration of the process scheduler

 Registration of actors on the message broker

 Actor scheduling

Listing 2.1 presents an example of a main controller of an actor-oriented embedded system. The imple-

mentation may differ depending on language and APIs of the libraries used, but the main concepts will

remain the same.

Listing 2.1

S TUD I A UN IVER S I T AT I S MOLDAV I A E , 2018, nr.2(112)

Seria “{tiin\e exacte [i economice” ISSN 1857-2073 ISSN online 2345-1033 p.26-30

28

As we can see the main controller has a configurational function only. So if we unify the APIs of all the
actor classes and do the same for the message brokers then we will be able to generate the main controller

based on configuration data. This would allow us to use a single configuration file for the generation of the

main controllers for different platforms/languages.

3. DSL Specification

As we want to decouple the platform/language specific stuff from the configuration data, we need a lan-
guage to express configuration in a clear and independent way. There are different mark-up languages meeting

most of our requirements (such as XML, JSON, YAML, TOML and others), but despite their advantages,
they do sometimes cause a significant increase in data size and processing time. Another problem is that

some of them are too generic and too verbose [10]. also they do not provide out of the box a possibility to
inject some environment variables (like execution time) and inline expressions.

As an alternative to existing generic mark-up languages a domain specific language could be developed.
The domain-specific languages (DSLs) are the programming languages tailored to particular application

domains. They allow the concise description of an application's logic reducing the semantic distance between
the problem and the program [11,12].

We will design a DSL for the definition of a cross-platform and modularized code generation for embedded
actor-oriented systems. Let’s call it PACT (Powerful ACTors). The main goals of the new language are:

elimination of hand-written boilerplate code, high modularity of generated code, high modularity of confi-
guration files and cross-platform code generation (for different platforms using the same configuration file).

3.1 Internal Model and Language Syntax

The modularity of generated code can be achieved by standard modularization tools of embedded pro-

gramming languages. Thus the reusable code can be stored in modules (e.g. C++ libraries) instead of placing

directly in the main controller. The libraries are developed over time and should be collected in a centralized
repository [13]. At the same time we introduce in our PACT language a new entity marked with keyword

‘actor’ (Listing 3.1). It will have the following attributes: name (a unique identifier), address (used for message
routing by message broker), module (external library), class/type (the name of the class including its namespace).

Listing 3.1

According to the DRY principle we want to eliminate the duplication of code in PACT files. The modu-
larization of the PACT file itself can be achieved by prototyping. Some actors defined in our configuration

file may partially repeat the configuration of the other ones. This can be elegantly solved by introducing an

entity called ‘prototype’, which will be used for storing the common attributes. It will have the same set of
attributes as ‘actor’ has. At the same time we add a new attribute ‘prototype’ to the ‘actor’ entity. In this case

an actor definition can easily inherit the common configuration attributes from a prototype. (Listing 3.2)

Listing 3.2

Another way to achieve high modularity of PACT configuration files is to introduce inheritance of PACT
files. It will help to achieve a higher level of abstractization. The common configuration stuff can be shared

among different files allowing extraction of potentially repeatable parts of configuration to the parent level.
The listings 3.3 and 3.4 demonstrate an example of configuration inheritance.

Listing 3.3

S TUD I A UN IVER S I T AT I S MOLDAV I A E , 2018, nr.2(112)

Seria “{tiin\e exacte [i economice” ISSN 1857-2073 ISSN online 2345-1033 p.26-30

29

Listing 3.4

3.2 Tools

To implement our own DSL we need to choose a tool for parsing & interpreting. There are multiple lan-

guages/frameworks/tools providing such functionality: ANTLR, XText, JetBrains MPS, Groovy, parboiled

(Java/Scala library), etc. Our choice is Groovy. It is a Java-syntax-compatible object-oriented programming

language for the Java platform. It supports closures, multiline strings and expressions embedded in strings.

Moreover Groovy supports chained methods with possibility to avoid periods and parentheses. Thus the DSL

statement from Listing 3.1 can be interpreted as a plain Groovy code (Listing 3.5):

Listing 3.5

As we can see the chained Groovy command expressions are very close to natural English language. A

human familiar with the domain can read and write this code with ease. However there are a couple of

problems to be wary of. The chained expressions should follow the strict order to be valid. Another pitfall is

that there are some Groovy grammar keywords which should be used carefully or should not appear in the

DSL at all. This may sometimes lead to the need of word-twisting and thus making the code look less natural

and harder to read. Despite these pitfalls Groovy is almost a perfect fit for the development of a DSL. We

will use it as a base for development and implementation of the PACT language.

3.3 Code generation

Code generation is one of the trickiest parts of PACT DSL. It should be aware of the target platform and

have sufficient knowledge about its architecture. But the problem is that we want to decouple the model from

the generator. The easiest solution is to create a custom implementation of common generator interface for

each target platform. Thus we will be able to choose the generator we need. The target platform can be

provided as a parameter to the main controller of PACT interpreter. Another option is to introduce a new

keyword in our DSL called ‘target’ in order to specify explicitly the target platform (Listing 3.6).

Listing 3.6

Listing 3.7

At the same time any explicit specification of the target platform will break the idea of loosely coupled

code generation. Each target platform will need its own copy of PACT configuration. However this problem

can be simply worked around by using inheritance as explained in previous section. Thereby the platforms

can inherit the common configuration (Listing 3.7) and extend/redefine some specific parts (Listings 3.8, 3.9).

Listing 3.8

Listing 3.9

Conclusion

In this paper we discussed the approaches and technologies which allow generation of actor-oriented

embedded software based on an initial model. Using a custom DSL the architecture and business logic can

be easily decoupled from custom embedded platforms, such as ARM, AVR, PIC, Arduino and others. Of

course the DSL approach is not ideal and has some pitfalls. But the positive effect of this approach has a

significant advantage over the inconveniences caused by those corner cases.

S TUD I A UN IVER S I T AT I S MOLDAV I A E , 2018, nr.2(112)

Seria “{tiin\e exacte [i economice” ISSN 1857-2073 ISSN online 2345-1033 p.26-30

30

The embedded software industry is growing fast and in order to meet the demands of the market it needs to

make a qualitative leap. The development of embedded systems for each platform separately is an outdated

approach. So switching to modern approaches (such as the one described in this paper) is inescapable and

will play a key role in revolutionizing the market and building the future.

References:

1. Global Embedded Software Market Research Report – Forecast 2022. https://www.marketresearchfuture.com/

reports/embedded-software-market-2103 (Retrieved on 17 May 2018)

2. STRALIN, T. GHANASAMBANDAM, C., ANDEN, P., COMELLA-DORDA, S., BURKACKY, O. Software de-

velopment handbook. Tranforming for the digital age, 2016. Software Development. McKinsey & Company, Inc.

3. HEWITT, C. Viewing Control Structures as Patterns of Passing Messages. In: Journal of Artificial Intelligence, 1977.

4. GUL, Agha. Actors: A Model of Concurrent Computation in Distributed Systems, 1986. Doctoral Dissertation. MIT Press.

5. KALE, V. Integration Technologies. Guide to Cloud Computing for Business and Technology Managers: From

Distributed Computing to Cloudware Applications. CRC Press, 2014. ISBN-9781482219227

6. SAMTANI, G., SADHWANI, D. Integration Brokers and Web Services. Web Services Business Strategies and

Architectures, 2013. Apress. ISBN 9781430253563

7. SILBERSCHATZ, A., GALVIN, P.B., GAGNE, G. Operating System Concepts (9 ed.). Wiley Publishing, 2012.

ISBN 0470128720

8. COOK, J.A., FREUDENBERG, J.S. Embedded Software Architecture. EECS, 2008.

9. TYREE, J., AKERMAN, A. Architecture Decisions: Demystifying Architecture. IEEE Software, IEEE Computer

Society Press Los Alamitos, 2005. ISSN: 0740-7459

10. MEGGINSON, D. Imperfect XML: Rants, Raves, Tips, and Tricks ... from an Insider. Addison-Wesley Professional,

2004. ISBN 0131453491

11. MERNIK, M., HEERING, J., SLOANE, A.M. When and how to develop domain-specific languages. ACM Computing

Surveys (CSUR), 2005.

12. SPINELLIS, D. Notable design patterns for domain specific languages. In: Journal of Systems and Software, 2001.

13. RAGHAV, G., GOPALSWAMY, S., RADHAKRISHNAN, K., DELANGE, J., HUGUES, J. Architecture Driven

Generation of Distributed Embedded Software from Functional Models. Ground Vehicle Systems Engineering and

Technology Symposium (GVSETS), 2009.

Date despre autor:

Evgheni TOLMACI, doctorand, Școala doctorală Matematică și Ştiinţa Informaţiei, Universitatea de Stat din Moldova.

E-mail: evgeniy.tolmach@gmail.com

Prezentat la 02.07.2018

http://usm.md/?page_id=11834

