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The accurate forecasting of electricity price and load is essential for maintaining a stable interplay between demand 
and supply in the dynamic electricity market. In this work we propose a deep Convolutional Neural Network-based model 
for day-ahead electricity price forecasting from historical price/load data and predicted load values. The model was tested 
on the data for New York and New South Wales and demonstrated high prediction accuracy for both datasets.  
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APLICAREA INVĂȚĂRII PROFUNDE LA PROGNOZA PREȚULUI ELECTRICITĂȚII  

      DIN DATE DE ÎNCĂRCARE 
Previziunea exactă a prețului și încărcării energiei electrice este esențială pentru menținerea unei interacțiuni stabile 

între cerere și ofertă pe piața dinamică a energiei electrice. În articol este descris un model profund bazat pe rețeaua 
neuronală convoluțională pentru prognozele viitoare ale prețului energiei electrice din datele istorice ale prețului / tarifelor 
și valorile prognozate ale tarifelor. Modelul a fost testat pe datele pentru New York și New South Wales și a demonstrat 
o precizie ridicată a predicțiilor pentru ambele seturi de date. 

Cuvinte-cheie: învățare profundă, învățare automată, rețele de memorie pe termen scurt, rețele neuronale convoluționale. 

 
 
Introduction 
Accurate forecasting of the electrical energy demand is crucial for electricity production, since electrical 

energy belongs to those commodities that cannot be fully stored, and needs to be consumed as soon as it is 
produced. Inefficient production and distribution of electricity incurs additional costs. The accurate prediction 
of electrical energy demand allows not only to avoid these costs by scheduling the load production, but also 
to manipulate with electricity price to achieve desired levels of consumption and maximize the profit. Moreover, 
the knowledge of expected demand allows more efficient use of natural resources for industrial production of 
electrical energy [1]. 

In the traditional electricity market framework, electricity consumption was strongly aligned with the regular 
peak demand curve, and thus, was quite predictable. The power production was more resource-consuming 
and expensive, since it ignored the immediate consumption feedback. Introduction of smart grids on the elec-
tricity market resulted in more efficient load management, allowing the supplier to set the price according to 
the consumption profile and making power production more cost-effective and environmentally friendly. It 
facilitates the adjustment of hourly consumption patterns of the end-users to minimize expenditures, thus 
lowering the electrical load in the grid at peak hours. It also resulted in increased dynamics of the electricity 
market – the end-users became dependent on the price value at a particular time of the day. The knowledge 
of future prices is also important for traders, retailers and other entities of the market, since it allows them to 
optimize financial strategies. Therefore, the implementation of price prediction mechanisms is essential in 
the deregulated market settings. 

The electrical load depends on other external factors, such as seasonal patterns, increasing with the drop 
in temperature. Traditional statistical, linear and non-linear models in most cases fail to deal with the high 
volatility in electricity price time series data. Artificial neural networks are known for learning complex non-
linear dependences. Recently emerged Recurrent Neural Networks, in particular Long-Short Term Memory 
networks, are capable to extract long-term temporal dependences, thus providing a more suitable tool for electri-
city price and load prediction. Despite the growing popularity of Deep Learning, the application of its methods 
to time series prediction is still in its nascent state and thus requires comprehensive and thorough analysis. 

In this work we present a novel CNN-based approach for day ahead electricity price prediction that takes 
as inputs the historical price and load data along with the predicted load to generate price forecast for the given 
day of interest. We validate the model on the electrical load and price data provided by the New York Independent 
System Operator [2] for a New York City district (N.Y.C.) and by the Australian Energy Market Operator 
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(AEMO) [3] for New South Wales. The proposed network can be deployed for both online and offline fore-
casting of electricity prices. 

To our best knowledge, CNN-based mapping between price and load has not been addressed in the literature. 

An attempt to predict electricity price by mapping from price and load historical data was reported in [4]. 

However, the difference of our approach and the one in [4] is that we are using deep CNN instead of backpro-

pagation network of two hidden layers. Our algorithm takes fewer parameters than the one proposed in [4] (5 vs 9). 

It is done intentionally to avoid over fitting and to allow the hidden layers of CNN to infer subtle dependences 

from the inputs. 

1. Previous research 

In the past the electricity suppliers were not market-oriented and the electricity price was set by governments. 

However, after the commercialization of the electricity supply and demand networks, the electricity price is 

determined by the newly emerged electricity market. In other words, the price is set according to the fluctuations 

in supply and demand on the electricity market, where electricity is regarded as a commodity. Compared to 

the load, the electricity price is more volatile, i.e. it can significantly change over the given period of time. 

Moreover, the load data is relatively homogenous and demonstrates cyclic variations, while the price data 

lacks such homogeneity and its variations follow quite a transient cyclic pattern [4]. In these volatile settings 

the knowledge of the electricity price beforehand is essential for decision making in electricity market. In fact, 

all entities of the market will benefit from the accurate price forecasts. The Independent Power Producers 

(IPPs) will be able to adjust the generation of power according to the expected price, reducing the cost of 

production. Market players will devise strategies for selling and buying the power on the market. The end-

users will shift their most electricity consuming activities to the times where electricity prices are low, thus 

reducing the load in the grid during the peak hours. The problem of price forecasting relies on several factors 

such as correlations between power demand and supply, generation costs, market structure, influence of other 

market participants, etc. These factors are used to create models, reflecting causation between historical elec-

tricity prices and future prices. Knowing this causation allows to accurately predict electricity prices in the 

future [26]. 

Since electricity is not a storable commodity, the balance between power supply and demand can only be 

achieved a stable power system. Therefore, in most cases, electricity price is highly volatile and easily affected 

by such factors as sudden changes in weather conditions, transmission problems in the power system, outages 

of large power plants, participants’ bidding strategies, transmission congestion, fuel prices, cost of unit opera-

tions to name a few. All these factors introduce additional complexities and challenges to the price forecasting 

task [26], [27]. 

The Artificial Neural Networks (ANN) have become widely popular since the second half of the 80’s. The 

Artificial Neural Networks are capable of extracting significant features from the data, inferring non-linear 

relationships and learning more general concepts from experience. Depending on the neuron model, ANNs 

architecture and learning algorithm can be Hybrid (e.g. Counter-propagation), Supervised (Brain State in a 

Box, Fuzzy Cognitive Map, Perceptron, Radial Basis Function, Support Vector Machine), Unsupervised (Adap-

tive Resonance Theory, Self-Organizing Maps, Principal Component Analysis) and with Reinforcement (Award/ 

Punishment Associative). In comparison with conventional techniques, ANNs can detect non-linear features 

even using a small dataset for training, thus resulting in more robust and accurate forecast. Future models for 

load time series prediction will either incorporate ANNs along with conventional algorithms into hybrid models 

or will be solely based on ANNs [5]. 

Despite the effectiveness of Artificial Neural Networks, for quite a long time they were not as popular as 

the kernels methods, such as support vector regression (SVR). The resurrection of Neural Networks occurred 

in 2006, with a seminal work by Geoffrey Hinton et al. [9] who demonstrated that the Deep Learning Networks 

can perform better than conventional Machine Learning methods. It boosted the applications of deep learning 

methods in different machine learning tasks, including computer vision, natural languages processing and 

other domains of Engineering and Science. In comparison with traditional shallow learning, deep learning 

networks incorporate multiple hidden layers and deploy stochastic optimization to learn more complex non-

linear dependences [10]. Varying number of layers allow encoding different levels of abstraction which results 

in improved performance. As a recently emerged branch of machine learning, deep learning networks are 
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applicable to a broad spectrum of complex real-world learning problems. For instance, deep learning networks’ 

implementations can be found in image classification, object detection and recognition, speech recognition, 

language translation, voice synthesis and many more.  

The first implementation of Deep Learning Networks for time-series forecasting is given in [11]. Authors 

deployed Deep Believe Learning Networks (DBN) for regression and prediction of time series data by combining 

the outputs from all DBNs with the help of support vector regression (SVR). The effectiveness of the proposed 

method was demonstrated on three independent datasets. In [12] authors deploy various simulations to show 

that recurrent networks can potentially outperform conventional nonlinear kernelized methods. They also explore 

how the performance of the network varies with its architecture (number of hidden layers and neurons per layer), 

demonstrating that additional complexity does not improve performance, and the optimal performance could 

be achieved with low number of layers. 

In another work [13], authors developed a deep learning network with contrastive divergence for natural 

gas load forecasting. Another example of using Deep Believe Learning Network with restricted Boltzmann 

machine (RBM) for time-series forecasting can be found in [14]. This novel approach outperformed the tradi-

tional Multilayer Perceptron (MLP) neural network and statistical ARIMA model. One efficient application 

of Conditional Restricted Boltzmann Machine (CRBM) and Factored Conditional Restricted Boltzmann 

Machine (FCRBM) to an individual (single-meter) residential electricity consumption forecasting is reported 

in [15]. The method evaluated on benchmark dataset of individual customer electricity consumption data with 

temporal resolution of one minute. Authors come to conclusion that FCRBM outperforms ANN, Support Vector 

Machine (SVM), Recurrent Neural Networks (RNN) and CRBM [15]. 

In general, conventional ANN based methods are vulnerable to vanishing and exploding gradient problems 

that occur during the backpropagation stage in multilayer architectures. Also, traditional Artificial Neural 

Networks and conventional Machine Learning Techniques, such as SVM, fail to capture sequential information 

in time-series data [16]. To overcome these issues, Recurrent Neural Networks (RNNs) were developed as a 

framework for capturing the non-stationary patterns in time-series as well as long-term dependences. RNNs 

are capable of sharing the parameters across different time steps and thus, require less training, resulting in 

more effective computations. These features made RNNs popular for long and short-term forecasting of 

electricity load. For instance, in [17] RNN with a pooling layer has been proposed to forecast the household 

electricity load. It is able to mitigate the overfitting by pooling different customer’s load profiles into one 

input, thus diversifying the data. The proposed pooling-based deep RNN demonstrated higher performance 

in comparison with traditional technics such as ARIMA, SVR and conventional deep RNN. In [16] authors 

developed a hybrid RNN model, that incorporates one step-ahead concept. First RNN was trained on electri-

city load time series that later were passed to the hybrid RNN model to learn non-linear dependences. The 

proposed model demonstrated a superior performance compared to the known methods. 

However, deep RNNs still suffer of vanishing and exploding gradient problems that have deteriorative 

effect on their performance. Long-Short Term Memory Networks were initially introduced by Sepp Hochreiter 

and Jurgen Schmidhuber [18] as variation of RNNs. Shortly, they became a popular tool for time-series pre-

diction due to their ability to deal with the vanishing and exploding gradient problems. LSTM networks are 

successfully applied for time-series forecasting in a variety of domains. For example, in [19] authors success-

fully adapted a combination of Deep Believe Networks, AutoEncoder and LSTM for renewable energy power 

forecasting and demonstrated that Deep Learning methods perform better than ANNs. In [20]  additional 

features such as temperature, humidity and wind speed have been fed to LSTM network with electricity load 

time series data. The LSTM network trained on these data was used for forecasting electricity load both for 

short and long forecasting horizons, varying from 24 hours to 30 days. Authors show that the LSTM based 

forecast is more accurate than the prediction from conventional technics. 

LSTM networks can be also scaled for the individual customer consumption (single-meter) forecasting. 

This type of forecasting is a very challenging task due to the volatile nature of individual loads influenced by 

a variety of external factors, such as climate, performance of thermal systems, and residency patterns. Marino et 

al. [21] were first to deploy LSTM networks to a single-meter load forecast. They used the same benchmark 

dataset as [15] and reported a similar performance as Factored Conditional Restricted Boltzmann Machine 

(FCRBM). Another work [22] deployed LSTM network for forecasting long-term electricity load time series. 

The authors deployed density-based clustering to infer the inconsistent nature of residential electricity load 
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profiles and discuss challenges associated with predicting load in residential areas. They also demonstrate 

that LSTM networks are capable of capturing subtle patterns in individual load profiles which makes them 

superior in the majority of cases. 

Another class of deep learning methods, the Convolutional Neural Networks (CNNs), have been success-

fully used for object recognition due to their ability to learn hidden dependences in raw data. CNNs can also 

capture local trend features and scale-invariant features for closely interrelated neighboring data points, e.g. 

local trend patterns in nearby hours. These circumstances make CNNs widely applicable for the electricity load 

prediction [23]. An example of load forecasting with CNN can be found in [24], where the authors demonstrate 

the superiority of CNN-based approach by reporting the achievement of the smallest forecasting error among 

the known methods. In the proposed CNN architecture three consecutive convolutional layers were used for 

feature extraction. The in-between pooling layers decrease the dimension of feature map and extract the important 

features from the deep layers. The forecasting is done at the output layer, where the flattened values pass through 

fully connected structure between flatten and output layers to the inputs of sigmoid function. This algorithm 

allows to make prediction of electricity load for the next three days.  

Amarasinghe K. et al. [25] explored the application of CNNs for electricity load forecasting on individual 

building level. The historical loads were passed through multiple convolutional layers and fed to the fully 

connected layers to perform regression and produce a prediction. As in the similar work on LSTM [21] the 

benchmark dataset for a single-residential customer data were used to evaluate the performance of CNN-based 

approach against ANN, SVM, LSTM and FCRBM. The presented CNN demonstrated comparable results to 

the FCRBM [15] and Sequence to Sequence LSTM [21] on the same dataset. All the examples above demonstrate 

viability of the CNNs for accurate electricity load forecasting. 

Similar to the electricity load prediction, there are traditional statistical methods and recent machine-learning 

based approaches to electricity price forecasting. An example of statistical model based on Autoregressive 

Integrated Moving Average (ARIMA) combined with wavelet transformation is presented in [28]. The day-

ahead forecast for the next 24 hours was obtained by applying inverse wavelet transform. The model has 

been tested on mainland Spain and California markets demonstrating quite reliable results. In [29] ARIMA 

has been also combined with the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and 

the wavelet transform was applied to the original time series to decompose them into two parts that can be 

predicted separately. To obtain the final forecast the inverse wavelet transform was applied to the prediction 

of both subseries. The performance of the proposed approach has been evaluated on the Spanish and PJM 

electricity markets and the results were compared with other forecasting methods. 

The problem with conventional statistical frameworks is that they perform well on the linear data however, 

when it comes to non-linear time series, they demonstrate a significant decline in prediction accuracy. To deal 

with the extreme non-linearity of price time series data, Voronin et al [30] developed an iterative model, 

consisting of modules for normal price and price outliers (spikes) prediction. The module for a normal price 

prediction is a mixture of wavelet transform, linear ARIMA and nonlinear neural network models. The spikes 

were handled by compound classifiers. The combined forecasts from both normal price prediction and spike 

prediction modules result into the overall price prediction. The combined model outperformed other known 

methods for price prediction. 

The ability of Artificial Neural Networks to learn non-linear dependences in time-series data was exploited 

by several authors to create successful models for electricity price prediction. In [31] Radial Basis Function 

Neural Network (RBFNN) is applied for prediction of short-term electricity load and price. The model took a 

day type (e.g. Sunday, Monday) as an optional parameter, and generally demonstrated better performance if 

the day type is supplied. Another work [4] relies on Artificial Neural Networks to extract the complex depen-

dences between the electricity price, load and other factors. The model takes as inputs several features such 

as the day of the week, time slot of the day, forecasted demand, change in demand, price for one day ago, one 

week ago, two weeks ago, three weeks ago and a month ago. The forecast horizon can vary from hours to 

days and weeks. The model proved to be efficient for normal days, but demonstrated poor performance for 

days with spikes. 

In [26] authors propose an electricity price forecasting system based on the combination of Convolutional 

Neural Network (CNN) and the Long Short-Term Memory (LSTM). The CNN network consists of two convo-

lutional 1D layers, with batch normalization after the second convolutional layer. The forecasting is performed 
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by LSTM unit with ReLU activation function. The hybrid system accepts the past 24 hours’ price data as its 

input and produces a forecast for the next hour. In comparison with the traditional machine learning approaches, 

the presented hybrid model demonstrates the best forecasting accuracy.  

Application of deep learning framework for electricity price prediction has also been explored in [32], where 

authors consider four different deep learning models and compare their prediction accuracy. The deep learning 

approaches usually outperform conventional methods. Authors also demonstrate that machine learning approaches 

perform better than traditional statistical models. The conventional approaches fail to achieve high forecast 

accuracies for price time series data, particularly the moving average-based models. Also, the hybrid models 

are not superior over their simpler components. Thus, the preference should be given to simple non-linear 

models, e.g. deep learning networks with few neurons in each layer. 

In general, deep learning methods demonstrate better performance on electricity price datasets due to their 

ability of learning complex non-linear dependences and patterns. Considering all the examples above we can 

make the following observations: 

 Long Short-Term Memory Networks [18] are better suited for dealing with non-linear sequences and thus, 

provide better accuracy for electricity price prediction. 

 A network with more than one layer is capable of modeling the same dependence as the single-layered 

network but with a smaller number of neurons that simplifies the architecture of the deep-learning net-

work. It also improves generalization of network [32]. 

Therefore, deep learning approaches represent a very promising technology for electricity price prediction. 

2. Problem definition 

Formally, times series can be represented as sequence of vectors, depending on time 𝑡: 𝑋(𝑡), 𝑡 = 0,1, … . 
Components of the vector 𝑋(𝑡) are observable variables, such as temperature, speed of wind, stock price, 

electricity load, etc. Actually, 𝑋(𝑡) is a continuous function, however, in practice, we are dealing with discrete 

time intervals. 𝑋(𝑡) defined on such discrete time intervals is called time sequences or time series. In the case 

of continuous variable domains, such as temperature, the values are sampled at points through the chosen time 

interval (e.g. measuring the temperature once in an hour). The number of measured points at the given time 

interval is known as sampling frequency. It is an important parameter, since different sampling frequencies 

may affect the characteristics of the time series. 

If vector 𝑋(𝑡) consists of one component only, the time series are called univariate. In the case of multi-

component vectors 𝑋(𝑡) we deal with multivariate time series. Analysis of multivariate time series focuses 

on identifying dependences between observable components of vector 𝑋(𝑡), for example, how the temperature 

affects the electricity price and utilizing these patters to predict one of the components. 

Time series forecasting, i.e. predicting the future dynamics of the variable of interest, is the most popular 

technic in real life applications. Most of the problems involve prediction of future values of vector 𝑋(𝑡), e.g. 

predicting electrical energy demand to estimate the network load and schedule electricity production. Formally, 

the time series forecasting problem can be defined as follows [33]: given time series 𝑋(𝑡), 𝑡 = 0, 1, …, find a 

function 𝑓: ℝ𝑘×𝑛+𝑙 → ℝ𝑘 , where 𝑘 = 𝑑𝑖𝑚(𝑋(𝑡)), e.g. 𝑘 = 24 if we are interested in predicting hourly load. 

𝑛 is the number of separate time series vectors to train, e.g. number of days to train the model. The ultimate 

goal is to obtain an estimate 𝑋̂(𝑡 + 𝑑) of the vector 𝑋, where 𝑑 is prediction lag (usually, 𝑑 = 1), given the 

values of 𝑋(𝑡) up to time 𝑡 and also additional time-dependent exogenous features 

𝜋𝑖, 𝑖 = 1, … , 𝑙: 𝑋̂(𝑡 + 𝑑) = 𝑓(𝑋(𝑡), 𝑋(𝑡 − 1), … , 𝑋(0), 𝜋1, . . . ,  𝜋𝑙) 

In this work exogenous features 𝜋𝑖, 𝑖 = 1, … , 𝑙 that can contain for example, the dynamics of population 

density in the district of interest, are neglected. 

3. Convolutional neural networks (CNN) 

Originally inspired by information processing in brain’s visual cortex, the most successful of all deep 

learning approaches, Convolutional Neural Networks (CNNs) are comprised of three- dimensional layers, 

that are able to encode both the spatial and depth representations, depending on the number of features. This 

architecture reflects the organization of RGB color channels in input (convolution) layer and therefore, CNN 

is widely used for image classification. The hidden (subsampling) layers of CNN encode primitive shapes in 
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lower layers, gradually progressing towards encoding more complex shapes, like loops, in higher layers. In 

the case of grayscale input the input layer has a depth of 1 but higher layers preserve their 3D structure. The 

convolution layer is termed after the convolution operation that relies on filter to map the activations from one 

layer to the next. During the convolution a 3D filter of weights is used and selection of spatial region in a layer, 

passed through the activation function (e.g. ReLU), defines the value of the hidden state of the next layer. In 

the next layer the activation preserves their spatial relationships from the previous layer. Since any activation in 

every hidden layer is a function of a tiny region in the previous layer, the convolutional network is sparsely 

connected. To compress the spatial residuals coming from previous layers, an additional subsampling layer is 

added, that averages the values of local regions of size 2 × 2 (subsampling operation). Traditionally, CNNs 

were designed for working with two-dimensional image data and they become very popular for image recognition, 

object localization and text processing. 

4. DEEP CNN for electricity price prediction 

The idea of multi-layer CNN for price prediction was inspired by the work of Singhal et al. [4], where 

authors consider a three-layer back propagation network taking as inputs time indices, forecasted demand and 

historical time-lagged actual price information to predict the future price value. In this work we use deep con-

volutional neural network with three 1D convolutional layers, three intermediary pooling layers and a dense 

layer as output layer (see Fig.1). The choice of CNN is influenced by the fact that electricity price data and 

electrical load are correlated, even though the relationship is non-linear [34]. The price is affected by a variety of 

external factors, including fluctuation in end-users’ consumption, seasonality, weather conditions and other 

social, economic and political factors and the dynamics of the market, which result in high volatility of the 

price data. Most of these factors are intrinsically 
encoded in load and historical price data. Since 

CNNs are capable of learning complex relationships, 

we anticipate that CNN with multilayer architecture 

will be able to learn an accurate mapping between 

load and price data. To our best knowledge, the deep 

learning CNN-based approach for predicting price 

from load values has not been addressed in the 

literature. The difference of our approach and the 

one proposed in [4] is that we are using deep CNN 

instead of backpropagation network of two hidden 

layers. Our algorithm takes fewer parameters than 

the one in [4] (5 vs 9) to avoid overfitting and to 

allow the hidden layers of CNN to infer subtle 

dependences from the inputs. 

Since there is no theory yet for determining an 

optimal number of layers and neurons in the deep 

learning network, we adopted a trial-and-error pro-

cess for developing the architecture of multilayer 

deep CNN for mapping between load and price 

data. We assumed that the first two layers of the 

network would learn the general and daily trend 

from the load and historical price data. The third 

layer is accountable for capturing other external 

factors, such as seasonality, outages and the dyna-

micity of the market. Also, as it is pointed in [32], a 

network with more than one layers is capable of 

modeling the same dependence as the single-layered 

network, but with a smaller number of neurons. Therefore, we decided to adopt a simple multilayered 

architecture to avoid overfitting. 

Fig.1. Block diagram of proposed Deep Learning CNN 

for electricity price prediction. 



S TUD I A  UN IVER S I T AT I S  MOLDAV I A E ,  2020, nr.7(137) 

Seria “{tiin\e exacte [i economice”  ISSN 1857-2073   ISSN online 2345-1033   p.71-81 

77 

Experimenting with number of network layer demonstrated that three convolutional 1D layers for learning 

temporal dependencies and with three pooling layers for dimensionality reduction result in optimal performance 

of the model. The proposed network takes actual prices for a day before the day of interest 𝑃𝑡−1 and the similar 

day a week ago 𝑃𝑡−6 along with the actual loads for a day before the day of interest 𝑋𝑡−1 and the similar day 

a week ago 𝑋𝑡−6. The fifth parameter is a predicted load for the day of interest 𝑋̂𝑡. And the output is the predicted 

price 𝑃̂𝑡 for the day of interest 𝑡. The network has been trained on a data for one year preceding the day 𝑡, to 

learn the dependencies between input [𝑃𝑡−6, 𝑃𝑡−1, 𝑋𝑡−6, 𝑋𝑡−1, 𝑋̂𝑡]
5×24

𝑇
 and output vectors [𝑃𝑡]1×24, where 𝑃𝑡 

are actual price values. The choice of load and price a week before the day of interest is justified by the presence 

of weekly trend in price and load variation patterns. Also, we 

consider load and price a day before the day of interest due 

to the similarity of load profile with the predicted day. The 

addition of more historical data as price/load two/three/four 

weeks ago does not produce a significant effect to the 

forecasting accuracy, but might result in network overfitting. 

We choose ReLU as activation for all layers, since it is more 

efficient for multilayer networks. The significant drop in loss 

of proposed model has been detected after 10-th epoch, 

however, due to the periodic spikes in validation loss we 

decided to increase the number of training epochs till 100. In 

overall, the proposed architecture demonstrated optimal per-

formance on the price dataset for the New York City district 

(NYISO, [2]) and for  New South Wales (AEMO) [3]. 
 

5. Results 

Electricity price prediction is a difficult problem due to volatility, non-stationarity and non-homogenous 

structure of price time series data. In contrast to electrical load, electricity price data has a less pronounced 

trend (see Fig.3). Also, price data is heavily affected by external factors. For example, price spike occurs if 

there is a transmission congestion detected in the system. After the spike, price usually reverts to a more 

reasonable level [4]. Regardless of volatile nature, electricity price is not a random variable. As it can be 

noticed from Fig.3., there is a periodic structure and variations in daily trend, correlated with electrical load. 

Fig.3. Load and predicted/actual electricity price values for NYC in October, 2019. 

 

Fig.2. Best price forecast for NYC, 2019.  
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Therefore, it is possible to learn hidden patterns and rules that determine price fluctuations from load and 

historical price data. Knowing these hidden dependences will result in more accurate electricity price 

forecast. 

The non-linear correlation between electrical load and 

price is influenced by different factors. Load is mostly affected 

by the consumption patterns, weather conditions, social events 

(e.g. holidays), seasonality and the inability to store the electric 

power. In the case of electricity price, all the load’s factors come 

into play along with other factors imposed by market, such as 

regulations of authorities, competitors’ pricing schemes, and 

other macro- and micro-economic factors. All these factors 

contribute to high volatility of price data and need to be considered 

for more accurate mapping between load and prices.  

We applied the proposed Convolutional Neural Network to 

establish the mapping between electricity load and price. As pricing 

data, we used Location-Based Marginal Pricing (LBMP) - cost 

to provide the next MW of Load at a Specific Location in the grid provided by the New York Independent 

System Operator [2] for the same location as load (N.Y.C.). 

The validation of CNN-based algorithm for electricity price prediction has been conducted on the data for 

2019. To train the model, the load and price data for the previous year was used. As a predicted load values, 

we used output from LSTM network, since it demonstrated relatively high average performance in comparison 

with the rest of the non-statistical models considered in this work. On the validation stage the inputs for each 

day were tested and after obtaining prediction the corresponding inputs were generated for predicted day’s 

actual value and the whole network has been retrained. This procedure is known as online learning and it allows to 

generate predictions for the longer forecasting horizons (in this case we need to use the predicted price for the 

given day instead of the actual price, since we assume the actual value is unknown). In overall, the proposed 

algorithm was able to achieve the average MAE of 28.3 and average MRE 32.48 on NYC and average MAE of 

22.35 and MRE 25.52 for NSW dataset for 2019. Fig.2 and Fig.4 show the best and worst predictions for the year 

of 2019 for NYC and Fig.6 with Fig.7 demonstrate the best and worst predictions for NSW. 

Fig.4. Worst price forecast for NYC, 2019. 

Fig.5. Load and predicted/actual electricity price values for NSW in April, 2019. 
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As it is easy to notice, the model fails to perform well 

when it faces the spike in electricity price. In addition, the 

forecasting accuracy of the model significantly drops down 

after the spike. Therefore, the forecast for the next few days 

after the outburst cannot be considered 100% reliable. For 

instance, in Fig.3 after the spike occurred on October 21, the 

model predicted small peaks for October 22 and 23 while the 

actual trend was almost flat. However, the peak for October 

11 did not affect the predictions for October 12 and 13. Thus, 

the presence of a spike may indicate a need for revising the 

forecast for the next few days after the outburst. 

Usually, spikes are the product of temporal discordance 

between electricity supply and demand. Even the discrepancies 

on the scale of seconds can induce significant spikes. The other 

factors resulting in spikes include power generation outages, 

congestion, behavior of market entities, manipulations on the 

market to name a few. 

Significant volatility of price data creates challenges for 

accurate forecasting of the future prices. As a result, the price 

forecasting accuracy is usually low that that of the electrical 

load forecasting. However, the requirements for price 

forecasting are not as stringent as for the electrical load and 

some degree of inaccuracy in prediction is acceptable. 

Conclusion 

In this study we present the CNN - based model for direct 

mapping between electricity load and price values. Since the 

price is very hard to predict due to its volatility, most of the 

conventional models are unable to capture all hidden 

dependencies resulting in unpredictable behavior of price 

values. The proposed CNN–based deep learning approach is capable of learning some of these dependences, 

which results in more-or-less adequate performance.  

 For future work it would be interesting to attempt learning the features inducing the peaks in price data. 

It can be accomplished by deploying wavelet transform to extract the deterministic and noise component and 

analyze them individually. It would also be interesting to explore the performance of more advanced deep 

learning techniques such as Generative Adversarial Networks (GANs) and Deep Reinforcement Learning for 

time series prediction, or hybrid models, incorporating CNN-s for feature learning and LSTM-s for 

prediction. 
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