ЧИСЛЕННЫЙ АНАЛИЗ СПЕКТРАЛЬНОЙ ФОТОПРОВОДИМОСТИ ВАРИЗОННОЙ СТРУКТУРЫ

Иван АНДРИЕШ, Олег КОРШАК^{*}, Аркадий КИРИЦА^{*}, Севастьян НЯМЦУ^{*}

Центр информационных технологий, *НИЛ фототермопластической записи

A fost dezvoltat un model matematic semifenomenologic al fotoconductivității în straturile subțiri $(As_2Se_3)_c(As_2S_3)_{1-c}$ cu structură varizonică. Pe baza modelului a fost realizată analiza numerică a dependenței spectrale a fotoconductivității în funcție de caracteristicile de absorbție și de grosimea straturilor.

A mathematic semi-phenomenologic model of photoconductivity in $(As_2Se_3)_c(As_2S_3)_{1-c}$ thin layers with varizonic structure was developed. In base of it the numeric analysis of spectral photoconductivity shape in dependence on absorption characteristics and layers thickness was performed.

1. Введение

Полупроводниковые варизонные структуры на основе таких систем, как $As_2S_3 - As_2Se_3$, $As_2S_3 - Sb_2S_3$ и других, обладают рядом уникальных свойств. Композиции $(As_2Se_3)_c(As_2S_3)_{1-c}$ с различной объемной концентрацией *с* исходных компонентов имеют одинаковую атомную структуру и с этой точки зрения являются твердыми растворами. Это подтверждается линейной зависимостью ширины запрещенной зоны системы от концентрации *c*, а также линейным по *c* смещением кривой края поглощения как целого без изменения структуры. Согласно соотношению Шимакавы [1], ширина запрещенной зоны раствора *E*_g выражается через ширину запрещенных зон *E*_{g1} и *E*_{g2} исходных компонентов в виде

 $E_g(c) = E_{gl} \cdot c + E_{g2} \cdot (1 - c) = E_{g2} + (E_{gl} - E_{g2}) \cdot c, \tag{1}$

где индексы 1 и 2, для определенности, относятся, соответственно, к компонентам As_2Se_3 и As_2S_3 . В соответствии с (1), ширина запрещенной зоны смеси является функцией объемной концентрации *с* и с изменением *с* от 0 до 1 она изменяется от значения 1,76 eV (ширина зоны для As_2Se_3) до значения 2,4 eV (ширина зоны для As_2S_3). Это приводит к появлению в слое варизонного материала внутренних квазиэлектрических полей и к координатной зависимости коэффициента поглощения света.

Таким образом, существует принципиальная возможность управлять шириной запрещенной зоны по толщине варизонного слоя, задавая закон изменения концентрации *c*, т.е. управлять, следовательно, всем набором характеристик, зависящих от характера изменения ширины запрещенной зоны.

Халькогенидные стеклообразные полупроводники (ХСП) с варизонной структурой широко применяются в устройствах фототермопластической записи информации в присутствии коронного разряда. Ввиду такого их применения, нас в первую очередь интересуют возможности управления формой спектральной зависимости фотопроводимости варизонных структур.

2. Модель фотопроводимости варизонной структуры и исходные соотношения

Математическое моделирование и численный анализ фотопроводимости тонких слоев халькогенидных материалов с варизонной структурой имеет целью оптимизацию характеристик фототермопластической записи методами компьютерного моделирования. При этом под математическим моделированием мы будем понимать здесь не моделирование на основе первых принципов, а развитие полуфеноменологической модели фотопроводимости.

Наиболее простая модель фотопроводимости может быть получена на основе широко проверенной экспериментально для халькогенидных стекол степенной зависимости фотопроводимости σ_f от интенсивности освещенности I [1,2]:

$$\sigma_f \approx A \cdot I^{\gamma}, \tag{2}$$

где A – слабозависящая от температуры константа; показатель степени γ в случае слабых освещенностей принимает значения в интервале $0.5 < \gamma < 1.0$.

STUDIA UNIVERSITATIS

Преимущество использования такого полуфеноменологического подхода состоит в том, что модель не содержит в явном виде информацию о детальном распределении генерируемых светом неравновесных носителей зарядов. Это эквивалентно пренебрежению диффузным и дрейфовым (во внешнем электрическом поле) смещениями носителей по глубине. Допустимость такого пренебрежения оправдана тем, что рассматриваются тонкие (1-3 мкм) слои.

Явная зависимость показателя степени γ от температуры может быть уточнена [1] на основе модели Роуза, согласно которой в запрещенной полосе ХСП имеется квазинепрерывное экспоненциальное по энергии распределение локализованных состояний (хвосты распределения):

$$N(E) = N_0 \exp(-E/kT^*),$$
 (3)

где T^* – формальный параметр, характеризующий скорость роста плотности состояний *N* как функции энергии *E*. Такое уточнение приводит к следующей зависимости γ от температуры [1]:

$$\gamma = \frac{2T^* - T}{T^* + T} \,. \tag{4}$$

Для соединения As_2S_3 экспериментальное значение T^* составляет 600 К и при температуре T = 293 К теоретическое значение γ составляет 1,01, что близко к его экспериментальному значению 1,0 при этой температуре.

Рис.1. Схематическое изображение изменения концентрации c(z) по толщине варизонной структуры (As₂Se₃)_c(As₂S₃)_{1-c}: d – толщина слоя.

Определим величину возникающего фототока при
освещении варизонной структуры, показанной на рис.1,
светом частоты v. Примем, что концентрация
$$c(z)$$

компонент в системе $(As_2Se_3)_c(As_2S_3)_{1-c}$ меняется по
пинейному закону: $c(z) = z/d$, где d – толщина слоя.
Коэффициент поглощения света является функцией
концентрации $\alpha = \alpha(c)$ и также будет меняться по тол-
цине. Естественно ожидать, что он меняется по тому
же линейному по концентрации закону (1), что и ширина
запрещенной зоны:

$$\alpha(z) = \alpha_2 + (\alpha_1 - \alpha_2) \cdot \frac{z}{d} \,. \tag{5}$$

На основании этого соотношения можно получить выражение для зависимости I(z) – интенсивности падающего света от координаты z. Для этого запишем уравнение для поглощения света в среде в виде:

$$\frac{dI(z)}{dz} = -I(z) \cdot \alpha(z), \quad I(z)\big|_{z=0} = I(0)(1-R), \tag{6}$$

где в отличие от случая однородной среды коэффициент поглощения зависит от *z*. Решая это уравнение для зависимости (5), получим:

$$I(z) = I(0)(1-R)\exp[-(\alpha_2 + \frac{\alpha_1 - \alpha_2}{2d} \cdot z)z].$$
 (7)

Здесь R – коэффициент отражения от передней поверхности z = 0.

Для уточнения спектральной зависимости коэффициента *A* в соотношении (2) примем, что скорость *G* генерации неравновесных носителей в единице объема за единицу времени равна [4]

$$G = \frac{\alpha(z) \cdot I(z)}{hv} \cdot \eta \,, \tag{8}$$

где *η* – квантовый выход внутреннего фотоэффекта. Считая дырочный характер фотопроводимости основным, имеем в стационарном режиме

Fizică

$$\Delta p = G \cdot \tau_h = \frac{\alpha(z) \cdot I(z)}{h\nu} \cdot \eta \cdot \tau_h, \qquad (9)$$

где τ_h – время жизни дырок. Комбинируя формулы (2), (5), (7)-(9), получим для фотопроводимости $\sigma_f = e \cdot \Delta p \cdot \mu_p$ следующее выражение:

$$\sigma_f(z) = B \cdot \frac{\alpha(z)}{h\nu} \cdot \exp\left[-\left(\alpha_2 + (\alpha_1 - \alpha_2)\frac{z}{2d}\right) \cdot \gamma z\right],\tag{10}$$

где коэффициент *B*, выраженный через основные характеристики материала в виде $B = e \cdot \eta \cdot \tau_h \cdot \mu_p \cdot I^{\gamma}(0) \cdot (1-R)^{\gamma}$, не зависит от частоты света. Здесь, μ_p – подвижность дырок. Спектральная зависимость проводимости (10) выражена, таким образом, через спектральные зависимости коэффициентов поглощения.

Выражение для темновой проводимости σ_0 мы получим, если положим, что линейная зависимость от концентрации *с* ширины запрещенной зоны (1) и коэффициента поглощения (5) имеет место и для темновой удельной проводимости. Таким образом,

$$\sigma_0(z) = \sigma_{02} + (\sigma_{01} - \sigma_{02}) \cdot \frac{z}{d}, \qquad (11)$$

где σ_{01} и σ_{02} – темновые удельные проводимости компонент 1 и 2 соответственно.

Зная темновую и световую удельные проводимости как функции z, мы можем определить, соответственно, темновое R_0 , световое R_f , и результирующее R сопротивления на единицу поверхности варизонного слоя толщиной d по формулам:

$$R_0 = \frac{1}{\Delta S} \int_0^d \frac{dz}{\sigma_0(z)}, \quad R_f = \frac{1}{\Delta S} \int_0^d \frac{dz}{\sigma_f(z)}, \quad R = \frac{1}{\Delta S} \int_0^d \frac{dz}{\sigma_0(z) + \sigma_f(z)}.$$
 (12)

Здесь ΔS – площадь контакта.

Первые два интеграла могут быть взяты и представлены в аналитической форме:

$$R_{0} = \frac{1}{\Delta S} \cdot \frac{d}{(\sigma_{01} - \sigma_{02})} \cdot \ln \left| 1 + \frac{(\sigma_{01} - \sigma_{02})}{\sigma_{02}} \right|,$$
(13)

$$R_{f}(h\nu) = \frac{d^{2}}{B \cdot \Delta s} \cdot \frac{h\nu \cdot \exp\left[-\frac{\alpha_{2}^{2} \cdot \gamma}{2(\alpha_{1} - \alpha_{2})}\right]}{2(\alpha_{1} - \alpha_{2})} \cdot \left[Ei\left(\frac{\alpha_{1}^{2} \cdot \gamma}{2(\alpha_{1} - \alpha_{2})}\right) - Ei\left(\frac{\alpha_{2}^{2} \cdot \gamma}{2(\alpha_{1} - \alpha_{2})}\right)\right], \quad (14)$$

где *Ei*(*x*) – интегральная показательная функция [5]. Третий интеграл в (12) может быть установлен численно.

3. Численный анализ спектральной зависимости фотопроводимости

Численный анализ выполним в предположении, что световая проводимость в (12) значительно превосходит темновую, так что $R \approx R_f$ и основные закономерности спектральной зависимости фотопроводимости могут быть получены на основе выражения (14) для сопротивления $R_f(hv)$. Анализ проведем на основе экспериментально полученных спектральных зависимостей для коэффициентов поглощения отдельных компонентов варизонной структуры, представленных на рис. 2.

Рис.2. Спектральная зависимость коэффициентов поглощения α₁ и α₂ в As₂Se₃ и As₂S₃ соответственно. Точками отмечены экспериментальные данные, сплошные кривые – результат экспоненциальной аппроксимации.

Экспериментальные данные были аппроксимированы в соответствии с правилом Урбаха экспоненциальными зависимостями вида $\alpha(h\nu) = \alpha_0 \exp[(h\nu - E_g)/\Delta E]$, где Eg – ширина запрещенной зоны, ΔE – параметр, определяющий протяженность и крутизну "хвостов" распределения состояний в запрещенной зоне. В результате аппроксимации по методу наименьших квадратов получены следующие зависимости:

$$\alpha_1(h\nu) = 0.23 \cdot \exp[(h\nu - 1.76)/0.16],$$

$$\alpha_2(h\nu) = 0.31 \cdot \exp[(h\nu - 2.40)/0.12].$$
(15)

На рис. З представлена в относительных единицах спектральная зависимость фототока $i = U/R_f$, рассчитанная по формуле (14) с использованием зависимостей (15). Здесь U – приложенное к структуре напряжение. Рассчитанная теоретически зависимость имеет типично наблюдаемый в эксперименте вид.

Из нее видно, что примерно до значений энергии фотонов hv = 2,1 эВ кривая фототока повторяет по форме кривую коэффициента поглощения в As₂Se₃ (рис. 2). Это следствие значительно более высокой фоточувствительности этой компоненты системы, которая и доминирует в этой области частот. Далее кривая достигает максимума и затем резко падает. Резкий спад и относительно узкая полуширина кривой фототока объясняется тем, что кривые коэффициентов поглощения (15) неограниченно возрастают, не выходя на насыщение. Следовательно, детали спектральной формы поглощения отдельных компонент играют определяющую роль в формировании спектральной зависимости фототока.

Рис.3. Типичная спектральная зависимость относительного фототока для варизонной структуры.

Таким образом, выражение (14) может быть использовано, например, для численного анализа зависимости положения спектрального максимума фототока от толщины d варизонной структуры. Такая зависимость приведена на рис. 4. Из нее видно, что с увеличением толщины структуры спектральный максимум сдвигается в сторону уменьшения энергии hv. Смещение максимума можно объяснить тем, что с ростом толщины все бо́льшая часть излучения оказывается поглощенной более фоточувствительной компонентой As₂Se₃.

Рис.4. Зависимость положения спектрального максимума фототока от толщины *d* варизонной структуры.

4. Заключение

Развитый выше полуфеноменологический подход численного анализа спектральной зависимости фототока варизонной структуры может служить основой для применения компьютерного моделирования с целью получения полупроводниковых материалов с заданными спектральными характеристиками. Метод чувствителен к детальной форме спектральной зависимости коэффициентов поглощения отдельных компонент твердого раствора и требует их более тщательного экспериментального измерения. В работе использован практически относительно легкореализуемый линейный закон изменения концентрации компонент варизонной структуры с глубиной слоя c(z) = z/d. Представляет интерес рассмотрение более сложной формы концентрационной зависимости c(z), варьирование которой вместе с варьированием толщины слоя d позволит в более широких пределах управлять спектральной характеристикой фототока, в первую очередь – положением максимума и полушириной формы.

Литература:

- 1. Popescu M., Andrieș A., Ciumaș V., Iovu M., Șutov S., Țiuleanu D. Fizica sticlelor calcogenice. București, Chișinău: Editura Științifică I.E.P. Știința, 1996. 486 p.
- Ишимов В., Сенокосов Э., Дементьев И., Гоглидзе Т. Технологические условия оптимизации оптоэлектронных параметров пленок стеклообразных полупроводников (As₂S₃)_x(As₂Se₃)_{1-x}, получаемых на рулонной основе. // Письма в ЖТФ. - 2002. - Том 28. - Вып.16. - С.79-84.
- 3. Программный пакет МАТЕМАТИКА.
- 4. Блатт Ф. Физика электронной проводимости в твердых телах. Москва: Мир, 1971.
- 5. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. Москва: Наука, 1971.

Prezentat la 18.02.2008

Fizică