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INTEGRATED COMPUTATIONAL APPROACH FOR ANALYZING 

BIOACTIVE COMPOUNDS IN CARDIOVASCULAR DISEASES
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We propose a step-by-step methodological approach for computational analysis of bioactive compounds in cardio-
vascular diseases (CVD) that integrates network medicine/systems biology, multi-omics integration, AI/ML, QSAR, 
molecular docking/AlphaFold 3, and chemogenomic resources. The workflow aligns with contemporary clinical 
stratification (HFrEF/HFmrEF/HFpEF; dyslipidemia; hypertension; coronary artery disease; pulmonary hyperten-
sion) and drug classes (statins/ezetimibe/PCSK9 inhibitors and siRNA; SGLT2 inhibitors; ARNI; vericiguat; targeted 
anti-inflammatories; ATTR-specific therapy). Projects under development include: virtual library, QSAR/early tox 
filters, target position/affinity (docking), including AlphaFold 3 complex prediction (AF3 for joint complex predic-
tion), network proximity, multi-omics signature matching, prioritized hit list. Representative studies (2014–2025) are 
synthesized, the effects presented, and a methodological scheme for further research developed.

Keywords: cardiovascular, bioactive, network medicine, multi-omics, ML, QSAR, molecular docking, drug-repo-
sitioning, AlphaFold 3.

ABORDARE COMPUTAȚIONALĂ INTEGRATĂ PENTRU 
ANALIZA COMPUȘILOR BIOACTIVI ÎN BOLILE CARDIOVASCULARE
Propunem o abordare metodologică, pas cu pas, pentru analiza computațională a compușilor bioactivi în bo-

lile cardiovasculare (BCV), care integrează medicina de rețea/biologia sistemelor, integrarea multi-omică, AI/ML, 
QSAR, docking molecular/AlphaFold 3 și resursele chemogenomice. Fluxul de lucru se aliniază cu stratificarea 
clinică contemporană (HFrEF/HFmrEF/HFpEF; dislipidemie; hipertensiune arterială; boală coronariană; hiperten-
siune pulmonară) și clasele de medicamente (statine/ezetimib/inhibitori PCSK9 și siRNA; inhibitori SGLT2; ARNI; 
vericiguat; antiinflamatoare țintite; terapie specifică ATTR). Proiectele aflate în dezvoltare includ: bibliotecă virtuală, 
filtre QSAR/early tox, poziție/afinitate țintă (docking), inclusiv predicție complexă AlphaFold 3 (AF3 pentru predicția 
complexului articular),  proximitate de rețea,  potrivire a semnăturilor multi-omice,  listă de rezultate prioritizate. 
Sunt sintetizate studii reprezentative (2014–2025), prezentate  efectele și elaborate o schemă metodologică pentru 
investigațiile ulterioare.

Cuvinte-cheie: cardiovascular, bioactiv, medicină de rețea, multi-omică, ML, QSAR, andocare moleculară, 
repoziționare de medicamente, AlphaFold 3.

Introduction
Cardiovascular diseases caused ~19.8 million deaths (~32%) in 2022, with ~85% from myocardial 

infarction and stroke [1]. Heart failure subtypes by LVEF-HFrEF (<40%), HFmrEF (40–49%), and HF-
pEF (≥50%) - per 2021 ESC guidelines, differ in remodeling, inflammation, metabolism, and endothelial 
function [2].

Atherosclerosis and ischemic heart disease associate lipid-related risks (LDL-C, ApoB, Lp(a)) with IL-
1β/NLRP3 signalling and oxidative stress, supported by multi-omics and network studies [7]. Hyperten-
sion and vascular remodelling involve RAAS, nitric oxide, oxidative stress, and inflammation [5]. Pul-
monary hypertension subtypes align with endothelin, NO-cGMP, and prostacyclin pathways, as shown in 
PVDOMICS-style phenomics [22–24]. In inherited cases, ATTR cardiomyopathy demonstrates a validated 
structure-based approach with tafamidis [25].

Network-based computational methods are increasingly applied in CVD [11]. The hypothesis: in-
tegrating module-level network proximity with omics-based disease/drug signatures and structure-in-
formed screening enhances mechanistic plausibility and candidate prioritization, including for natural 
compounds [3, 10–12].
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Materials and methods
Design and Sources
We performed a systematic literature review (2014–2025) on computational methods for drug repurpos-

ing in CVD, following PRISMA 2020 for transparency and reproducibility [6]. Aligned with open-science 
principles, we prioritized sources supporting data/code availability. Key sources included PubMed/MED-
LINE, AHA Journals, Nature Portfolio, and major cardiology society guidelines; ESC 2021 HF guidelines 
provided clinical context [2]. 

Search Strategy
Final searches were completed in mid-2025. Core Boolean queries (PubMed fields in brackets) were 

designed to capture computational approaches in cardiovascular disease (CVD), for example:
(,,cardiovascular disease”[Title/Abstract] AND (repurposing OR “drug reposition*”) AND (network OR 

,,multi-omics” OR QSAR OR docking OR AlphaFold)
(,,heart failure” OR atherosclerosis OR “pulmonary hypertension”)[MeSH Terms] AND (,,machine 

learning” OR AI OR ,,drug–target interaction”)
To enhance clinical relevance, we included refinement tokens targeting specific phenotypes (HFrEF, 

HFmrEF, HFpEF), drug classes (SGLT2 inhibitors, ARNI, vericiguat), rare conditions (ATTR amyloidosis, 
tafamidis), and anti-inflammatory agents (colchicine, canakinumab).).

Inclusion and Exclusion Criteria
Inclusion: i) CVD focus plus ≥1 method: (A) network medicine; (B) multi-omics; (C) AI/ML for 

repurposing; (D) QSAR/in silico safety; (E) structural modeling (docking, MD, AlphaFold); (ii) meth-
odological transparency (data/methods available; preference for open code/data); (iii) validation—ex-
ternal or experimental/clinical; QSAR/ML must align with OECD-style principles [9]; (iv) practical 
relevance (lab/clinical testing or independent cohorts); (v) alignment with clinical context (e.g., ESC 
2021 HF) [2].

Exclusion: non-peer-reviewed, outside 2014-2025, or lacking transparency/validation.
QSAR/ML validation principles (per manuscript scope): applicability domain; external validation on 

independent sets; metrics (e.g., R²/RMSE for regression; AUC/F1 for classification); model transparency 
and documentation [9].

Data extraction
We extracted standardized fields into evidence tables.
Clinical studies: population; endpoints; HR/RR; significance.
Network/Systems: proximity metrics; target/protein ranking strategies.
AI/ML: validation metrics (AUC, precision, recall, F1) on internal vs external cohorts; feature families 

(network proximity, omics signatures, mutational profiles).
QSAR: descriptors/fingerprints; R², RMSE; cross-validation; external test sets.
Docking/MD: software (AutoDock, Schrödinger, GROMACS), scoring functions, force fields, simula-

tion timeframes; stability metrics (RMSD; binding free energy).
Resources recorded included PPI, small-molecule libraries, omics datasets, and registries; we noted 

availability of open code/data.
Synthesis and Comparative Framework
We organized approaches into five operational levels to show vertical integration (molecule → pheno-

type) and horizontal integration across computational modalities:
(A) network medicine/systems biology; (B) multi-omics integration; (C) AI/ML; (D) QSAR/toxicity; 

(E) clinical validation. Comparative tables summarize data types, scope, validation, and translational 
outputs. 

Results
We identified computational approaches for drug repositioning and molecular stratification in CVD and 

grouped them into five levels within a single pipeline (Table 1; Figure 1). Levels progress from in-silico 
predictions to multi-stage clinical validation.
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Table 1. Key computational approaches and their roles in CVD
Lev-

el
Method/
module Purpose Strength Limitations Typical data 

sources
Examples/ 

refs*
A Network medi-

cine; target–
disease prox-
imity metrics; 
disease-module 
mapping

Identify poly-
target nodes; 
rank targets and 
candidates for 
repositioning

Systems-level 
perspective; in-
tegrates multi-
scale data; de-
tects potential 
synergies

Incomplete/
noisy networks; 
static interac-
tome snapshots

PPI networks; 
gene–disease 
databases; path-
way databases

Network medi-
cine in CVD 
[11]; multi-
omics network 
medicine [7]; 
network-based 
repositioning [3]

B Integration of 
genomics, tran-
scriptomics, 
proteomics, 
metabolomics

Phenotype 
stratification; 
identification 
of mechanistic 
“hotspots”; 
disease–drug 
signature 
matching

Mechanistic 
grounding; sup-
ports personali-
sation

Platform het-
erogeneity; 
sample-size/
normalisation 
requirements

GWAS; RNA-
seq; proteomic 
and metabolo-
mic profiles

Multi-omics 
framework [7]

C AI/ML models 
for DTI and 
candidate rank-
ing; multimod-
al integration

Prioritise com-
pounds/targets 
using network 
and omics fea-
tures

Scalable; cap-
tures non-linear 
patterns; poten-
tially explain-
able

Risk of over-
fitting; label 
dependence; 
dataset bias

ChEMBL; 
LINCS/CMap; 
EHR/EMR; 
registries

Foundation 
model for re-
purposing [8]

D QSAR / ML-
QSAR; predic-
tion of activity 
and ADMET 
(incl. cardiac 
risks)

Rapid struc-
ture–activ-
ity–toxicity 
filtering; early 
removal of 
unsuitable can-
didates

Speed; inter-
pretability (for 
some models)

Limited ap-
plicability do-
main; dataset 
quality; need 
for external 
validation

Chemical de-
scriptors/finger-
prints; in-vitro 
toxicology

QSAR valida-
tion principles 
[9]

E Clinical effec-
tiveness (RCTs, 
meta-analyses, 
registries, 
RWE/EHR)

Confirm ben-
efit/safety 
on clinical 
outcomes; 
translate com-
putational hy-
potheses

RCT/meta-
analysis publi-
cations; regis-
tries; EHR

Time/cost; in-
clusion criteria 
constraints

RCT/meta-
analysis publi-
cations; regis-
tries; EHR

Examples in 
Table 4

Abbreviations: PPI - protein-protein interaction; DTI – drug-target interaction; ADMET - absorption, 
distribution, metabolism, excretion, toxicity; EHR - electronic health records.

Network-level analysis (Level A). T The network approach applied principles from network biology and 
medicine to identify therapeutic targets and candidate compounds. Diseases were modeled as modules within 
the human interactome; drugs were mapped via their target proteins in this network. The core concept was net-
work proximity: drug targets located near disease modules were more likely to have therapeutic effects [3,11].

As shown in Figure 2, overlap or adjacency between drug targets and disease modules indicated poten-
tial efficacy, while proximity to adverse-reaction modules suggested side effect risk [3, 11]. We used inter-
actome data and gene–disease association databases to define statistically significant disease modules and 
retrieve approved drugs linked to them [3,11]. Examples appear in Table 2.
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Figure 1. Integrated computational pipeline for drug repositioning in cardiovascular diseases 
(CVD): Virtual library → QSAR/Tox filter (quantitative structure–activity relationship/toxicity) → 
Target & pose (Docking/AF3 (AlphaFold 3)) → Network proximity (disease module) → multi-omics 
signature matching → Shortlist & mechanism-of-action (MoA) narrative → Prioritized hit list for 
wet-lab.

The aim at this level was to identify multi-target nodes—genes or proteins whose perturbation could 
modulate entire disease modules. Despite limitations from incomplete or noisy network data, this layer 
formed the foundation for downstream integration and candidate prioritization (Level A, Table 1).

Figure 2. D–T–C (Disease–Target–Compound) schematic: network proximity of drug targets to 
the disease module and their relationship to modules of adverse effects (author’s schematic).



STUDIA  UNIVERSITATIS  MOLDAVIAE
Revista științifică a Universității de Stat din Moldova, 2025, nr. 6(186)

78

Table 2. Representative natural compounds and mechanisms in CVD

Compound (source) Key targets/pathways 
and proposed effects

Evidence base 
(type of evidence)

Polyphenols: quercetin, luteolin, 
naringenin, punicalagin (various 
plants)

Anti-inflammatory and anti-
oxidant effects; modulation of 
PI3K/Akt/NRF2; impact on lipid 
metabolism; possible effects on 
NLRP3/IL-1β

Integrative review of herbal bio-
active in CVD (in silico with in 
vitro/in vivo confirmations) [15]; 
herb/target databases used for 
pathway mapping [16].

Salvianolic acids (Total Salvi-
anolic Acid Injection, Salvia 
miltiorrhiza)

Cardioprotection in ischaemia-re-
perfusion: antioxidant/anti-apop-
totic actions; pathways linked to 
oxidative stress and inflammation

Network pharmacology plus 
experimental verification (cell/
animal ischaemia-reperfusion 
models) [17].

Compounds from Suaeda salsa 
(candidate ACE inhibitors)

ACE inhibition; potential antihy-
pertensive and anti-remodelling 
activity

3D-QSAR, metabolomics, dock-
ing, and molecular dynamics; 
prioritisation of natural ACE in-
hibitors [18].

Imperatorin (Angelica dahurica 
and others)

Targeting ACE/post-MI remodel-
ling pathways; anti-inflammato-
ry/vasoprotective potential

Network pharmacology plus ani-
mal validation in post-infarction 
remodelling [19].

Multi-omics approaches integrated datasets across genomics, transcriptomics, proteomics, metabolomics, 
and related layers to support molecular stratification of CVD. Using large biobanks and patient-level data, we 
derived disease signatures that partitioned heterogeneous syndromes into subtypes sharing pathogenic path-
ways [7,20]. Table 3 shows examples of multi-omics biomarkers, such as gene-expression signatures linked 
to heart-failure phenotypes and associated target pathways. At this layer, the goal was to identify regulatory 
nodes, actionable targets, and match disease and drug signatures e.g., compounds that reverse pathological 
profiles [8]. Key challenges included high dimensionality, data heterogeneity, and variability.

Table 3. Classification of cardiovascular diseases (CVD) with a molecular focus

Clinical category Dominant molecular 
mechanisms/markers

Priority targets/ 
pathways

Representative
 evidence

Heart failure: HFrEF / 
HFmrEF / HFpEF

Myocardial energetic 
shift (reduced fatty-
acid β-oxidation with 
increased glycolysis), 
mitochondrial dysfunc-
tion, Ca²⁺ homeostasis, 
inflammation/fibrosis; 
NT-proBNP

SGLT2-linked metabolic 
axes; TGF-β/ECM (col-
lagen, MMP/TIMP); 
Ca²⁺ regulation (SER-
CA2a/RYR); NO–sGC–
cGMP

ESC heart-failure guide-
line on HF phenotypes 
[2]; metabolic remodel-
ling in HF [20]

Ischaemic heart disease / 
atherothrombosis

Lipid cascade (LDL-C, 
ApoB, Lp(a)); inflam-
mation (IL-1β/NLRP3); 
thrombosis

HMGCR (statins), 
PCSK9, NPC1L1; IL-1β 
/ inflammatory cascade; 
antithrombotic targets 
(e.g., P2Y12)

Multi-omics/network 
framework for CVD [7]; 
anti-inflammatory ther-
apy (CANTOS, IL-1β) 
[21]

Pulmonary hypertension 
(predominantly arterial)

Imbalance of vasoactive 
pathways: endothelin, 
NO–cGMP, prostacyclin; 
vascular remodelling

ETA/ETB (endothelin re-
ceptors), PDE5, sGC, IP 
(prostacyclin) receptors

PVDOMICS pro-
gramme: phenomics 
and stratification in PH 
[22–24]
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Inherited/rare forms 
(example: ATTR car-
diomyopathy)

TTR amyloidogenesis; 
myocardial fibril deposi-
tion

TTR stabilisation (ta-
famidis); aggregation 
inhibition

ATTR-ACT: efficacy of 
TTR stabilisation [25]

Abbreviations: ECM - extracellular matrix; MMP/TIMP- matrix metalloproteinases / their tissue inhibi-
tors; SERCA2a-sarcoplasmic reticulum Ca²⁺-ATPase; RYR-ryanodine receptor; NO-sGC-cGMP-nitric oxide 
/ soluble guanylate cyclase / cyclic GMP; ETA/ETB-endothelin receptor subtypes; PDE5-phosphodiester-
ase-5; IP-prostacyclin receptor; TTR-transthyretin.

Level 3 applied AI/ML to biomedical data, using features like network proximity, omics profiles, and 
mutations to rank drug candidates for CVD [8]. Strengths included scalability and non-linear modeling; key 
limitations were data demands, overfitting risk, and low interpretability [8]. Explainable AI (XAI) helped 
identify molecular features tied to therapeutic effects, though rare diseases and external validation remained 
challenging. This stage (Table 1) linked upstream network/omics data to cheminformatics, narrowing broad 
inputs into specific candidates.

Shortlisted compounds were assessed via molecular docking and QSAR to evaluate target binding and 
ADMET profiles. Docking predicted binding modes and interactions [10,12]; QSAR estimated activity/tox-
icity from chemical structure [9]. Docking was limited by static models and simplified scoring [10]; QSAR 
by training-set constraints and strict validation needs [9].

Clinical effectiveness and validation. This level completed the integrated pipeline by converting hy-
potheses generated at the molecular-target level (docking/AF3), and at the network and omics levels, into 
testable patient-level clinical effects. We summarized outcomes from large, randomized trials across key 
drug classes (Table 4) that exemplify repositioning or extension of indications in cardiology. 

Table 4. Drug classes, targets, and outcome effects

Class/target Drug(s) (example) Population/ 
context

Key outcome/ 
effect 	 Pivotal trial

PCSK9 inhibitors Evolocumab ASCVD/CAD on 
background statins

Primary endpoint: 
HR = 0.85; LDL-C 
↓ ≈ 59%

FOURIER [13]

PCSK9 inhibitors Alirocumab Post-ACS on inten-
sive statins

Reduction in com-
posite ischaemic 
events (MACE) 
(qualitative)

ODYSSEY OUT-
COMES [14]

PCSK9 siRNA Inclisiran ASCVD/CAD on 
standard therapy

Sustained LDL-C ↓ 
≈ 50% with twice-
yearly dosing

ORION-10/11 [26]

SGLT2 inhibitors Dapagliflozin HFrEF Composite “wors-
ening HF / CV 
death”: HR = 0.74 
(95% CI 0.65–0.85)

DAPA-HF [27]

SGLT2 inhibitors Empagliflozin HFrEF Composite “HF 
hospitalisation / CV 
death”: HR = 0.75 
(95% CI 0.65–0.86)

EMPEROR-Re-
duced [28]

ARNI (NEP + AT1) Sacubitril/valsartan HFrEF Superiority to enala-
pril on the primary 
endpoint (qualitative)

PARADIGM-HF 
[30]
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sGC stimulator Vericiguat Recently decom-
pensated HFrEF

Reduced risk of 
CV death/HF hos-
pitalisation (quali-
tative)

VICTORIA [31]

Anti-inflammatory 
(IL-1β)

Canakinumab Post-MI with el-
evated CRP

Recurrent CV 
events: HR = 0.85 
(95% CI 0.74–0.98)

CANTOS [21]

Anti-inflammatory 
(colchicine)

Colchicine (low 
dose)

Post-MI Ischaemic events: 
HR = 0.77 (95% CI 
0.61–0.96)

COLCOT [32]

Anti-inflammatory 
(colchicine)

Colchicine (low 
dose)

Chronic CAD Composite out-
come: HR = 0.69 
(95% CI 0.57–0.83)

LoDoCo2 [33]

TTR stabiliser Tafamidis ATTR cardiomy-
opathy

↓ all-cause mortal-
ity and CV-related 
hospitalisations 
(qualitative)

ATTR-ACT [25]

Abbreviations: ASCVD - atherosclerotic cardiovascular disease; CAD - coronary artery disease; ACS - 
acute coronary syndrome; HF - heart failure; HFrEF- HF with reduced ejection fraction; HFpEF- HF with 
preserved ejection fraction; NEP - neprilysin; AT1 - angiotensin II type-1 receptor; sGC - soluble guanylate 
cyclase; CV - cardiovascular; MACE - major adverse cardiovascular events; MI - myocardial infarction; 
CRP - C-reactive protein; TTR - transthyretin.

PCSK9 Inhibition (Monoclonal Antibodies): In FOURIER, evolocumab plus statins reduced LDL-C 
by ~59% and CV events by 15% (HR 0.85; 95% CI 0.79–0.92; p<0.001) [13]. In ODYSSEY OUTCOMES, 
alirocumab reduced MACE post-ACS (HR 0.85; 95% CI 0.78–0.93; p<0.001) [14]. These support network-
based prioritization of LDL-catabolic pathways (Table 4).

PCSK9-Targeting siRNA: Inclisiran, in ORION-10/11, showed ~50% LDL-C reduction with twice-
yearly dosing (p<0.001) [26], aligning with network/multi-omics predictions for long-term PCSK9 sup-
pression (Table 4).

SGLT2 Inhibitors: DAPA-HF: Dapagliflozin reduced HF worsening/CV death by 26% in HFrEF (HR 
0.74; p<0.001) [27].

EMPEROR-Reduced: Empagliflozin reduced CV death or HF hospitalization by 25% (HR 0.75; 
p<0.001) [28].

EMPEROR-Preserved: Benefit extended to HFpEF (HR 0.79; p<0.001) [29]. These findings support 
multi-omics signals involving energetic remodelling and inflammation.

ARNI (Sacubitril/Valsartan): In PARADIGM-HF, ARNI outperformed enalapril in HFrEF (HR 0.80; 
p<0.001), reducing all-cause mortality [30], consistent with network models of cGMP signalling and ECM 
remodelling.

sGC Stimulation (Vericiguat): VICTORIA showed modest benefit post-HF decompensation (HR 0.90; 
p=0.02) [31], supporting the NO–sGC–cGMP pathway identified in network analyses.

Anti-inflammatory Strategies: CANTOS: Canakinumab lowered CV events via IL-1β inhibition (HR 
0.85; p=0.021) without lipid changes [21]. COLCOT and LoDoCo2: Low-dose colchicine reduced events 
post-MI (HR 0.77) [32] and in stable CAD (HR 0.69; p<0.001) [33], validating multi-target anti-inflamma-
tory strategies linked to the NLRP3/IL-1β axis.

ATTR Cardiomyopathy (TTR Stabilization): In ATTR-ACT, tafamidis reduced all-cause mortality 
(HR 0.70) and CV hospitalizations (RR 0.68) over 30 months [25], confirming predictions from structure-
based binding models.
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Conclusion
We propose a five-tier pipeline for cardiovascular drug repurposing, from chemical filters to phenotypic 

outputs. QSAR cardiotoxicity, docking/AlphaFold3, and multi-modal ML generate mechanistic hypoth-
eses, which are mapped to disease modules via network proximity and omics signature matching to ex-
pose polypharmacology. Benchmarking against trial-validated classes (PCSK9, SGLT2, IL-1β) enhances 
translational relevance and reduces overfitting (Table 4). Key limitations include omics data variability, the 
need for interpretable and externally validated ML, and docking/MD constraints from force-field accuracy 
and limited biological context. Next steps involve longitudinal multi-omics, integration with real-world 
data (EHRs, registries), rare disease expansion, and coupling with high-throughput ex vivo or organ-on-
chip platforms for accelerated validation [34,35]. This framework integrates AI/ML, docking, and network 
medicine into a scalable, clinically grounded strategy for precision cardiology.
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