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INTEGRATED COMPUTATIONAL APPROACH FOR ANALYZING
BIOACTIVE COMPOUNDS IN CARDIOVASCULAR DISEASES
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We propose a step-by-step methodological approach for computational analysis of bioactive compounds in cardio-
vascular diseases (CVD) that integrates network medicine/systems biology, multi-omics integration, AI/ML, QSAR,
molecular docking/AlphaFold 3, and chemogenomic resources. The workflow aligns with contemporary clinical
stratification (HFrEF/HFmrEF/HFpEF; dyslipidemia; hypertension; coronary artery disease; pulmonary hyperten-
sion) and drug classes (statins/ezetimibe/PCSK9 inhibitors and siRNA; SGLT?2 inhibitors; ARNI; vericiguat; targeted
anti-inflammatories; ATTR-specific therapy). Projects under development include: virtual library, QSAR/early tox
filters, target position/affinity (docking), including AlphaFold 3 complex prediction (AF3 for joint complex predic-
tion), network proximity, multi-omics signature matching, prioritized hit list. Representative studies (2014-2025) are
synthesized, the effects presented, and a methodological scheme for further research developed.

Keywords: cardiovascular, bioactive, network medicine, multi-omics, ML, OSAR, molecular docking, drug-repo-
sitioning, AlphaFold 3.

ABORDARE COMPUTATIONALA INTEGRATA PENTRU

ANALIZA COMPUSILOR BIOACTIVI IN BOLILE CARDIOVASCULARE

Propunem o abordare metodologica, pas cu pas, pentru analiza computationald a compusilor bioactivi in bo-
lile cardiovasculare (BCV), care integreaza medicina de retea/biologia sistemelor, integrarea multi-omica, AI/ML,
QSAR, docking molecular/AlphaFold 3 si resursele chemogenomice. Fluxul de lucru se aliniaza cu stratificarea
clinicad contemporand (HFrEF/HFmrEF/HFpEF; dislipidemie; hipertensiune arteriala; boald coronarian; hiperten-
siune pulmonar3) si clasele de medicamente (statine/ezetimib/inhibitori PCSK9 si siRNA; inhibitori SGLT2; ARNI;
vericiguat; antiinflamatoare tintite; terapie specificd ATTR). Proiectele aflate in dezvoltare includ: biblioteca virtuala,
filtre QSAR/early tox, pozitie/afinitate tinta (docking), inclusiv predictie complexa AlphaFold 3 (AF3 pentru predictia
complexului articular), proximitate de retea, potrivire a semnaturilor multi-omice, listd de rezultate prioritizate.
Sunt sintetizate studii reprezentative (2014-2025), prezentate efectele si elaborate o schema metodologica pentru
investigatiile ulterioare.

Cuvinte-cheie: cardiovascular, bioactiv, medicina de retea, multi-omica, ML, OSAR, andocare moleculara,
repozitionare de medicamente, AlphaFold 3.

Introduction

Cardiovascular diseases caused ~19.8 million deaths (~32%) in 2022, with ~85% from myocardial
infarction and stroke [1]. Heart failure subtypes by LVEF-HFrEF (<40%), HFmrEF (40-49%), and HF-
pEF (=50%) - per 2021 ESC guidelines, differ in remodeling, inflammation, metabolism, and endothelial
function [2].

Atherosclerosis and ischemic heart disease associate lipid-related risks (LDL-C, ApoB, Lp(a)) with IL-
1B/NLRP3 signalling and oxidative stress, supported by multi-omics and network studies [7]. Hyperten-
sion and vascular remodelling involve RAAS, nitric oxide, oxidative stress, and inflammation [5]. Pul-
monary hypertension subtypes align with endothelin, NO-cGMP, and prostacyclin pathways, as shown in
PVDOMICS-style phenomics [22—24]. In inherited cases, ATTR cardiomyopathy demonstrates a validated
structure-based approach with tafamidis [25].

Network-based computational methods are increasingly applied in CVD [11]. The hypothesis: in-
tegrating module-level network proximity with omics-based disease/drug signatures and structure-in-
formed screening enhances mechanistic plausibility and candidate prioritization, including for natural
compounds [3, 10—12].
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Materials and methods

Design and Sources

We performed a systematic literature review (2014—2025) on computational methods for drug repurpos-
ing in CVD, following PRISMA 2020 for transparency and reproducibility [6]. Aligned with open-science
principles, we prioritized sources supporting data/code availability. Key sources included PubMed/MED-
LINE, AHA Journals, Nature Portfolio, and major cardiology society guidelines; ESC 2021 HF guidelines
provided clinical context [2].

Search Strategy

Final searches were completed in mid-2025. Core Boolean queries (PubMed fields in brackets) were
designed to capture computational approaches in cardiovascular disease (CVD), for example:

(,,cardiovascular disease”[Title/Abstract] AND (repurposing OR “drug reposition*’) AND (network OR
,,multi-omics” OR QSAR OR docking OR AlphaFold)

(,,heart failure” OR atherosclerosis OR “pulmonary hypertension”)[MeSH Terms] AND (,,machine
learning” OR AI OR ,,drug—target interaction”)

To enhance clinical relevance, we included refinement tokens targeting specific phenotypes (HFrEF,
HFmrEF, HFpEF), drug classes (SGLT2 inhibitors, ARNI, vericiguat), rare conditions (ATTR amyloidosis,
tafamidis), and anti-inflammatory agents (colchicine, canakinumab).).

Inclusion and Exclusion Criteria

Inclusion: i) CVD focus plus >1 method: (A) network medicine; (B) multi-omics; (C) AI/ML for
repurposing; (D) QSAR/in silico safety; (E) structural modeling (docking, MD, AlphaFold); (ii) meth-
odological transparency (data/methods available; preference for open code/data); (iii) validation—ex-
ternal or experimental/clinical; QSAR/ML must align with OECD-style principles [9]; (iv) practical
relevance (lab/clinical testing or independent cohorts); (v) alignment with clinical context (e.g., ESC
2021 HF) [2].

Exclusion: non-peer-reviewed, outside 2014-2025, or lacking transparency/validation.

QSAR/ML validation principles (per manuscript scope): applicability domain; external validation on
independent sets; metrics (e.g., R/RMSE for regression; AUC/F1 for classification); model transparency
and documentation [9].

Data extraction

We extracted standardized fields into evidence tables.

Clinical studies: population; endpoints; HR/RR; significance.

Network/Systems: proximity metrics; target/protein ranking strategies.

AI/ML: validation metrics (AUC, precision, recall, F1) on internal vs external cohorts; feature families
(network proximity, omics signatures, mutational profiles).

QSAR: descriptors/fingerprints; R?, RMSE; cross-validation; external test sets.

Docking/MD: software (AutoDock, Schrodinger, GROMACS), scoring functions, force fields, simula-
tion timeframes; stability metrics (RMSD; binding free energy).

Resources recorded included PPI, small-molecule libraries, omics datasets, and registries; we noted
availability of open code/data.

Synthesis and Comparative Framework

We organized approaches into five operational levels to show vertical integration (molecule — pheno-
type) and horizontal integration across computational modalities:

(A) network medicine/systems biology; (B) multi-omics integration; (C) AI/ML; (D) QSAR/toxicity;
(E) clinical validation. Comparative tables summarize data types, scope, validation, and translational
outputs.

Results

We identified computational approaches for drug repositioning and molecular stratification in CVD and
grouped them into five levels within a single pipeline (Table 1; Figure 1). Levels progress from in-silico
predictions to multi-stage clinical validation.
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Table 1. Key computational approaches and their roles in CVD

Lev- Method/ Purpose Strength Limitations Typical data Examples/

el module sources refs*

A Network medi- | Identify poly- [ Systems-level | Incomplete/ PPI networks; | Network medi-
cine; target— target nodes; perspective; in- | noisy networks; | gene—disease | cine in CVD
disease prox- [ rank targets and | tegrates multi- | static interac- | databases; path- | [11]; multi-
imity metrics; | candidates for | scale data; de- | tome snapshots | way databases | omics network
disease-module | repositioning | tects potential medicine [7];
mapping synergies network-based

repositioning [3]

B Integration of | Phenotype Mechanistic Platform het- | GWAS; RNA- [ Multi-omics
genomics, tran- | stratification; grounding; sup- | erogeneity; seq; proteomic | framework [7]
scriptomics, identification | ports personali- | sample-size/ and metabolo-
proteomics, of mechanistic | sation normalisation | mic profiles
metabolomics | “hotspots”; requirements

disease—drug
signature
matching

C AI/ML models | Prioritise com- | Scalable; cap- | Risk ofover- | ChEMBL,; Foundation
for DTI and pounds/targets | tures non-linear | fitting; label LINCS/CMap; | model for re-
candidate rank- [ using network | patterns; poten- | dependence; EHR/EMR; purposing [8]
ing; multimod- | and omics fea- | tially explain- | dataset bias registries
al integration | tures able

D QSAR/ML- [ Rapid struc- Speed; inter- Limited ap- Chemical de-

QSAR; predic- | ture—activ- pretability (for | plicability do- | scriptors/finger- | QSAR valida-
tion of activity | ity—toxicity some models) [ main; dataset | prints; in-vitro | tion principles
and ADMET [ filtering; early quality; need [ toxicology [9]
(incl. cardiac | removal of for external
risks) unsuitable can- validation

didates

E Clinical effec- | Confirm ben- | RCT/meta- Time/cost; in- | RCT/meta- Examples in
tiveness (RCTSs, | efit/safety analysis publi- [ clusion criteria | analysis publi- | Table 4
meta-analyses, | on clinical cations; regis- | constraints cations; regis-
registries, outcomes; tries; EHR tries; EHR
RWE/EHR) translate com-

putational hy-
potheses

Abbreviations: PPI - protein-protein interaction; DTI — drug-target interaction;, ADMET - absorption,
distribution, metabolism, excretion, toxicity, EHR - electronic health records.

Network-level analysis (Level A). T The network approach applied principles from network biology and
medicine to identify therapeutic targets and candidate compounds. Diseases were modeled as modules within
the human interactome; drugs were mapped via their target proteins in this network. The core concept was net-
work proximity: drug targets located near disease modules were more likely to have therapeutic effects [3,11].

As shown in Figure 2, overlap or adjacency between drug targets and disease modules indicated poten-
tial efficacy, while proximity to adverse-reaction modules suggested side effect risk [3, 11]. We used inter-
actome data and gene—disease association databases to define statistically significant disease modules and
retrieve approved drugs linked to them [3,11]. Examples appear in Table 2.

76




)

Seria ,,Stiinte reale si ale naturii’

Stiinte biologice ISSN 1814-3237
. QSAR/ Target Network Multi-omics  Shortlist Prioritized
Virtual Tox filter & pose proximity signature  &mechanism-  hit list
library (Docking /AF3)  (disease matching of-action  for wet-lab
module) (MoA narrative
1 2 3 4 5 6 7

Figure 1. Integrated computational pipeline for drug repositioning in cardiovascular diseases
(CVD): Virtual library — QSAR/Tox filter (quantitative structure-activity relationship/toxicity) —
Target & pose (Docking/AF3 (AlphaFold 3)) — Network proximity (disease module) — multi-omics
signature matching — Shortlist & mechanism-of-action (MoA) narrative — Prioritized hit list for
wet-lab.

The aim at this level was to identify multi-target nodes—genes or proteins whose perturbation could
modulate entire disease modules. Despite limitations from incomplete or noisy network data, this layer
formed the foundation for downstream integration and candidate prioritization (Level A, Table 1).

Network proximity: “metro map” (legend with right padding)
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Figure 2. D-T-C (Disease—Target—-Compound) schematic: network proximity of drug targets to
the disease module and their relationship to modules of adverse effects (author’s schematic).
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Table 2. Representative natural compounds and mechanisms in CVD

Compound (source)

Key targets/pathways
and proposed effects

Evidence base
(type of evidence)

Polyphenols: quercetin, luteolin,
naringenin, punicalagin (various
plants)

Anti-inflammatory and anti-
oxidant effects; modulation of
PI3K/Akt/NRF2; impact on lipid
metabolism; possible effects on
NLRP3/IL-1B

Integrative review of herbal bio-
active in CVD (in silico with in
vitro/in vivo confirmations) [15];
herb/target databases used for
pathway mapping [16].

Salvianolic acids (Total Salvi-
anolic Acid Injection, Salvia
miltiorrhiza)

Cardioprotection in ischaemia-re-
perfusion: antioxidant/anti-apop-
totic actions; pathways linked to

oxidative stress and inflammation

Network pharmacology plus
experimental verification (cell/
animal ischaemia-reperfusion
models) [17].

Compounds from Suaeda salsa
(candidate ACE inhibitors)

ACE inhibition; potential antihy-
pertensive and anti-remodelling
activity

3D-QSAR, metabolomics, dock-
ing, and molecular dynamics;
prioritisation of natural ACE in-
hibitors [18].

Imperatorin (Angelica dahurica
and others)

Targeting ACE/post-MI remodel-
ling pathways; anti-inflammato-
ry/vasoprotective potential

Network pharmacology plus ani-
mal validation in post-infarction
remodelling [19].

Multi-omics approaches integrated datasets across genomics, transcriptomics, proteomics, metabolomics,
and related layers to support molecular stratification of CVD. Using large biobanks and patient-level data, we
derived disease signatures that partitioned heterogeneous syndromes into subtypes sharing pathogenic path-
ways [7,20]. Table 3 shows examples of multi-omics biomarkers, such as gene-expression signatures linked
to heart-failure phenotypes and associated target pathways. At this layer, the goal was to identify regulatory
nodes, actionable targets, and match disease and drug signatures e.g., compounds that reverse pathological
profiles [8]. Key challenges included high dimensionality, data heterogeneity, and variability.

Table 3. Classification of cardiovascular diseases (CVD) with a molecular focus

acid B-oxidation with
increased glycolysis),
mitochondrial dysfunc-
tion, Ca?>" homeostasis,
inflammation/fibrosis;
NT-proBNP

lagen, MMP/TIMP);
Ca*" regulation (SER-
CA2a/RYR); NO-sGC-
cGMP

- Dominant molecular Priority targets/ Representative
Clinical category . .
mechanisms/markers pathways evidence
Heart failure: HFrEF / Myocardial energetic SGLT2-linked metabolic | ESC heart-failure guide-
HFmrEF / HFpEF shift (reduced fatty- axes; TGF-B/ECM (col- |line on HF phenotypes

[2]; metabolic remodel-
ling in HF [20]

Ischaemic heart disease /
atherothrombosis

Lipid cascade (LDL-C,
ApoB, Lp(a)); inflam-
mation (IL-1B/NLRP3);
thrombosis

HMGCR (statins),
PCSK9, NPCI1L1; IL-1B
/ inflammatory cascade;

antithrombotic targets
(e.g., P2Y12)

Multi-omics/network
framework for CVD [7];
anti-inflammatory ther-
apy (CANTOS, IL-1p)
[21]

Pulmonary hypertension
(predominantly arterial)

Imbalance of vasoactive
pathways: endothelin,
NO-—cGMP, prostacyclin;
vascular remodelling

ETA/ETB (endothelin re-
ceptors), PDES, sGC, IP
(prostacyclin) receptors

PVDOMICS pro-
gramme: phenomics
and stratification in PH
[22-24]
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Inherited/rare forms TTR amyloidogenesis; | TTR stabilisation (ta- ATTR-ACT: efficacy of
(example: ATTR car- myocardial fibril deposi- | famidis); aggregation TTR stabilisation [25]
diomyopathy) tion inhibition

Abbreviations: ECM - extracellular matrix; MMP/TIMP- matrix metalloproteinases / their tissue inhibi-
tors; SERCA2a-sarcoplasmic reticulum Ca?*-ATPase; RYR-ryanodine receptor; NO-sGC-cGMP-nitric oxide
/ soluble guanylate cyclase / cyclic GMP,; ETA/ETB-endothelin receptor subtypes;, PDE5-phosphodiester-
ase-3; IP-prostacyclin receptor, TTR-transthyretin.

Level 3 applied AI/ML to biomedical data, using features like network proximity, omics profiles, and
mutations to rank drug candidates for CVD [8]. Strengths included scalability and non-linear modeling; key
limitations were data demands, overfitting risk, and low interpretability [8]. Explainable AI (XAI) helped
identify molecular features tied to therapeutic effects, though rare diseases and external validation remained
challenging. This stage (Table 1) linked upstream network/omics data to cheminformatics, narrowing broad
inputs into specific candidates.

Shortlisted compounds were assessed via molecular docking and QSAR to evaluate target binding and
ADMET profiles. Docking predicted binding modes and interactions [10,12]; QSAR estimated activity/tox-
icity from chemical structure [9]. Docking was limited by static models and simplified scoring [10]; QSAR
by training-set constraints and strict validation needs [9].

Clinical effectiveness and validation. This level completed the integrated pipeline by converting hy-
potheses generated at the molecular-target level (docking/AF3), and at the network and omics levels, into
testable patient-level clinical effects. We summarized outcomes from large, randomized trials across key
drug classes (Table 4) that exemplify repositioning or extension of indications in cardiology.

Table 4. Drug classes, targets, and outcome effects

Population/ Key outcome/ . .
Class/target Drug(s) (example) cI:)n text yeﬂec ¢ Pivotal trial
PCSKO inhibitors | Evolocumab ASCVD/CAD on [Primary endpoint: | FOURIER [13]
background statins | HR =0.85; LDL-C
1 =59%
PCSK®9 inhibitors | Alirocumab Post-ACS on inten- | Reduction in com- | ODYSSEY OUT-
sive statins posite ischaemic COMES [14]
events (MACE)
(qualitative)
PCSKO9 siRNA Inclisiran ASCVD/CAD on | Sustained LDL-C | [ ORION-10/11 [26]
standard therapy ~ 50% with twice-
yearly dosing
SGLT2 inhibitors | Dapagliflozin HFrEF Composite “wors- | DAPA-HF [27]
ening HF / CV

death”: HR =0.74
(95% CI 0.65-0.85)
SGLT2 inhibitors | Empagliflozin HFrEF Composite “HF EMPEROR-Re-
hospitalisation / CV | duced [28]
death”: HR =0.75
(95% CI 0.65-0.86)

ARNI (NEP + AT1) | Sacubitril/valsartan | HFrEF Superiority to enala- | PARADIGM-HF
pril on the primary [ [30]
endpoint (qualitative)

79



STUDIA UNIVERSITATIS MOLDAVIAE
Revista stiintifica a Universitatii de Stat din Moldova, 2025, nr. 6(186)

sGC stimulator Vericiguat Recently decom- Reduced risk of VICTORIA [31]
pensated HFrEF CV death/HF hos-
pitalisation (quali-
tative)
Anti-inflammatory | Canakinumab Post-MI with el- Recurrent CV CANTOS [21]
(IL-1B) evated CRP events: HR = 0.85
(95% CI 0.74-0.98)
Anti-inflammatory | Colchicine (low Post-MI Ischaemic events: | COLCOT [32]
(colchicine) dose) HR =0.77 (95% CI
0.61-0.96)
Anti-inflammatory | Colchicine (low Chronic CAD Composite out- LoDoCo2 [33]
(colchicine) dose) come: HR =0.69
(95% CI 0.57-0.83)
TTR stabiliser Tafamidis ATTR cardiomy- | all-cause mortal- | ATTR-ACT [25]
opathy ity and CV-related
hospitalisations
(qualitative)

Abbreviations: ASCVD - atherosclerotic cardiovascular disease; CAD - coronary artery disease; ACS -
acute coronary syndrome; HF - heart failure; HFrEF- HF with reduced ejection fraction; HFpEF- HF with
preserved ejection fraction; NEP - neprilysin,; AT - angiotensin Il type-1 receptor,; sGC - soluble guanylate
cyclase; CV - cardiovascular; MACE - major adverse cardiovascular events;, MI - myocardial infarction;
CRP - C-reactive protein, TTR - transthyretin.

PCSKO9 Inhibition (Monoclonal Antibodies): In FOURIER, evolocumab plus statins reduced LDL-C
by ~59% and CV events by 15% (HR 0.85; 95% CI1 0.79-0.92; p<0.001) [13]. In ODYSSEY OUTCOMES,
alirocumab reduced MACE post-ACS (HR 0.85; 95% CI 0.78-0.93; p<0.001) [ 14]. These support network-
based prioritization of LDL-catabolic pathways (Table 4).

PCSKO9-Targeting siRNA: Inclisiran, in ORION-10/11, showed ~50% LDL-C reduction with twice-
yearly dosing (p<0.001) [26], aligning with network/multi-omics predictions for long-term PCSK9 sup-
pression (Table 4).

SGLT?2 Inhibitors: DAPA-HF: Dapaglifiozin reduced HF worsening/CV death by 26% in HFrEF (HR
0.74; p<0.001) [27].

EMPEROR-Reduced: Empagliflozin reduced CV death or HF hospitalization by 25% (HR 0.75;
p<0.001) [28].

EMPEROR-Preserved: Benefit extended to HFpEF (HR 0.79; p<0.001) [29]. These findings support
multi-omics signals involving energetic remodelling and inflammation.

ARNI (Sacubitril/Valsartan): In PARADIGM-HF, ARNI outperformed enalapril in HFrEF (HR 0.80;
p<0.001), reducing all-cause mortality [30], consistent with network models of cGMP signalling and ECM
remodelling.

sGC Stimulation (Vericiguat): VICTORIA showed modest benefit post-HF decompensation (HR 0.90;
p=0.02) [31], supporting the NO-sGC—-cGMP pathway identified in network analyses.

Anti-inflammatory Strategies: CANTOS: Canakinumab lowered CV events via IL-1p inhibition (HR
0.85; p=0.021) without lipid changes [21]. COLCOT and LoDoCo2: Low-dose colchicine reduced events
post-MI (HR 0.77) [32] and in stable CAD (HR 0.69; p<0.001) [33], validating multi-target anti-inflamma-
tory strategies linked to the NLRP3/IL-1p axis.

ATTR Cardiomyopathy (TTR Stabilization): In ATTR-ACT, tafamidis reduced all-cause mortality
(HR 0.70) and CV hospitalizations (RR 0.68) over 30 months [25], confirming predictions from structure-
based binding models.
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Conclusion

We propose a five-tier pipeline for cardiovascular drug repurposing, from chemical filters to phenotypic
outputs. QSAR cardiotoxicity, docking/AlphaFold3, and multi-modal ML generate mechanistic hypoth-
eses, which are mapped to disease modules via network proximity and omics signature matching to ex-
pose polypharmacology. Benchmarking against trial-validated classes (PCSK9, SGLT2, IL-1B) enhances
translational relevance and reduces overfitting (Table 4). Key limitations include omics data variability, the
need for interpretable and externally validated ML, and docking/MD constraints from force-field accuracy
and limited biological context. Next steps involve longitudinal multi-omics, integration with real-world
data (EHRs, registries), rare disease expansion, and coupling with high-throughput ex vivo or organ-on-
chip platforms for accelerated validation [34,35]. This framework integrates AI/ML, docking, and network
medicine into a scalable, clinically grounded strategy for precision cardiology.
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