

SYNTHESIS, ANTIOXIDANT ACTIVITY AND ADME ANALYSIS OF SOME N⁴-SUBSTITUTED THIOSEMICARBAZONES WITH β -IONONE FRAGMENT

Andrei CIURSIN, Iana STOICA, Roman RUSNAC, Aurelian GULEA,

*Laboratory of Advanced Materials in Biopharmaceutics and Technics,
Institute of Chemistry, Moldova State University*

Thiosemicarbazones are organic compounds with remarkable biological properties, including anticancer, antibiotic, antifungal, and antioxidant effects. Some of these compounds have found application in medicine and are currently in use or undergoing clinical trials. One of the key problems in the application of chemical compounds, including thiosemicarbazones, in medical practice is their toxicity. A possible solution to this problem may be the synthesis of thiosemicarbazones based on natural fragments. This may lead to improved biological properties and reduced toxicity. In this work, four thiosemicarbazones were synthesized based on β -ionone. DPPH radical inhibition analysis was performed to reveal the antioxidant potential of the synthesized compounds. In addition, ADME (abbreviation (acronym) for absorption, distribution, metabolism, and excretion) screening was performed to identify some pharmacological parameters, which are essential for the potential use of the compound in the medicinal field.

Keywords: thiosemicarbazones, antioxidant activity, DPPH, β -ionone, ADME screening

SINTEZA, ACTIVITATE ANTIOXIDANTĂ ȘI MODELAREA ADME A UNOR TIOSEMICARBAZONE N⁴-SUBSTITUITE CU FRAGMENT DE β -IONONĂ

Tiosemicarbazonele sunt compuși organici cu efecte biologice remarcabile, printre care se regăsesc efectele anticancer, antibiotice, antifungice și antioxidantive. Unii din acești compuși și-au găsit aplicare în medicină și sunt utilizati curent sau trec testările clinice. Una dintre problemele esențiale în aplicarea compușilor chimici, inclusiv a tiosemicarbazoneelor, în practica medicinală este toxicitatea lor. O soluție posibilă a acestei probleme poate servi sinteza tiosemicarbazoneelor în baza fragmentelor compușilor naturali ce poate contribui la îmbunătățirea proprietăților biologice și la scăderea toxicității. În această lucrare, sunt prezentate rezultatele sintezei a patru tiosemicarbazone în baza β -iononei. Determinarea acțiunii antioxidantane *in vitro* la inhibarea radicalului 2,2-difenil-1-picrilhidrazil (DPPH) a fost efectuată pentru identificarea potențialului terapeutic antioxidant al compușilor sintetizați. Pentru determinarea proprietăților fundamentale în dezvoltarea terapeutică, a fost efectuat screening-ul ADME (abreviere: absorția, distribuția, metabolizarea și eliminarea) pentru identificarea parametrilor farmacologici esențiali la utilizarea potențială a compusului în domeniul medicinal.

Cuvinte-cheie: tiosemicarbazone, activitatea antioxidantă, DPPH, β -iononă, modelare ADME.

INTRODUCTION

In recent decades, cancer has remained one of the leading causes of death worldwide [1] (figure 1), being not only a medical but also a serious socio-economic problem. According to the World Health Organization, millions of new cases of malignant neoplasms are registered annually, and forecasts indicate a further increase in incidence. Despite significant advances in diagnosis and therapy, modern treatment methods are often accompanied by pronounced side effects and do not always ensure a complete cure. In this regard, the search for new approaches to the prevention and treatment of cancer remains one of the priority tasks of modern science.

One of the key factors involved in the initiation and progression of tumor processes is oxidative stress—an imbalance between the formation of reactive oxygen species (ROS) and the ability of cellular antioxidant systems to neutralize their effects [2]. Excessive accumulation of ROS leads to damage to biomolecules, including lipids, proteins, and nucleic acids, which in turn contributes to mutagenesis, inflammatory processes, and the activation of signalling pathways associated with carcinogenesis [3-4]. Thus, restoring redox balance and reducing oxidative stress are considered promising directions for cancer prevention and therapy.

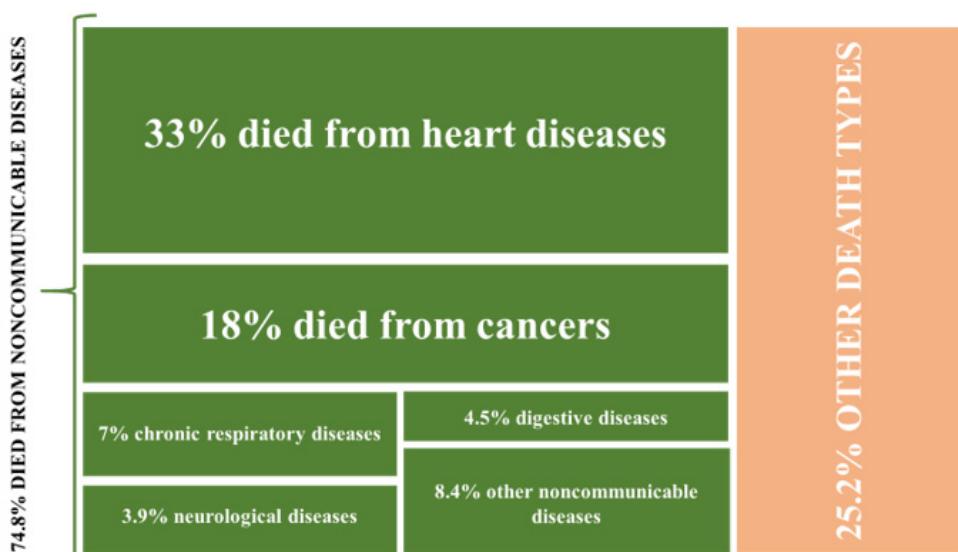


Figure 1. Global causes of death, 2019 [1].

In recent years, increasing attention has been devoted to the search for new synthetic and natural compounds with pronounced antioxidant activity. Among such compounds, thiosemicarbazones have attracted significant interest due to their remarkable structural diversity and broad spectrum of biological properties. Numerous research groups have focused on their synthesis and biological evaluation. Thiosemicarbazones are known for their antimicrobial [5-7], antifungal [7-9], antiviral [10], anticancer [11-14], antioxidant [15-18] and anti-inflammatory [19] activities. Their biological potential is well recognized in pharmacology, with compound such as Triapine serves as notable example [20].

In addition, a large number of thiosemicarbazones incorporating natural fragments have been synthesized [21-24]. These hybrid molecules have demonstrated promising results in various biological assays [21-24]. The inclusion of natural moieties can also reduce the toxicity of thiosemicarbazones, addressing one of the key limitations hindering their clinical application. Furthermore, the functionalization of naturally active compounds may lead to an enhancement of their pharmacological properties.

β -Ionone (4-[2,6,6-trimethyl-1-cyclohexen-1-yl]-3-buten-2-one), is a cyclic terpenoid compound that forms the core structure of retinol, β -carotene and vitamin A (see figure 2) [25]. This volatile aromatic compound has been isolated from plant oils, such as *Viola odorata*, *Boronia megastigma* Nees, *Petunia hybrida*, *Cistus monspeliensis*, *Lepidium meyenii*, *Medicago marina*, *Osmanthus fragrans*, *Rosa bourboniana*, *Thymus serpyllum* and other species [25].

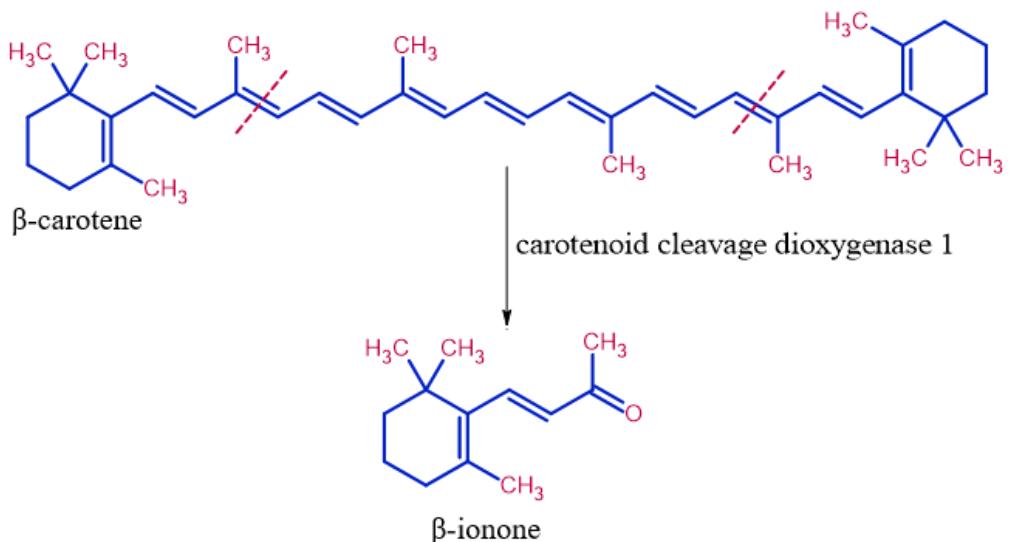


Figure 2. Production of β -ionone from β -carotene by carotenoid cleavage dioxygenase 1 (CCD1) [25].

β -Ionone also can be found in fruits, vegetables and cereals that contain β -carotene, such as carrots, raspberries, roasted almonds, tea and tomatoes [25]. Additionally, β -Ionone is a component that is used in perfumery, decorative cosmetics, fine fragrances [26], shampoos, soaps and other products, so it's considered an important flavour contributor.

Studies have demonstrated that β -ionone and its derivatives may exhibit significant pharmacologic activities, such as antileishmanial [27], anti-inflammatory [28] and antimicrobial [29] activities.

Taking into consideration written above, there is a perspective of synthesizing new thiosemicarbazones based on β -ionone. These have good potential to exhibit useful biological activities, having lower toxicity. In this article the synthesis, physicochemical research, antioxidant activity analysis and *in silico* investigation of some thiosemicarbazones based on β -ionone are described.

MATERIALS AND METHODS

Synthesis of precursors

Phenyl isothiocyanate

In a round bottom flask, a mixture of 1 equivalent of aniline and isopropanol was placed. Then 1 equivalent of tetramethylthiuram disulfide (TMTD) was added and the obtained mixture was refluxed for 3 hours. The end of the reaction was determined by thin layer chromatography. The mixture was cooled to the room temperature and then added to the ice-water mixture. The precipitated solid was filtered and dissolved in a minimal amount of concentrated hydrochloric acid. The resulting solution was filtered from elemental sulphur and then diluted with distilled water until the white solid precipitated. The obtained solid was recrystallized from ethanol to yield white crystalline solid of compound (1).

Then, in a round bottom flask, 1 equivalent of compound (1) was mixed with toluene and 1 equivalent of acetic anhydride. Resulted mixture was refluxed for 2 hours. Then it was cooled to the room temperature and washed three times with water. Toluene layer was separated and dried over anhydrous Na_2SO_4 . The toluene was distilled off to result a yellowish oil of phenyl isothiocyanate (compound 2).

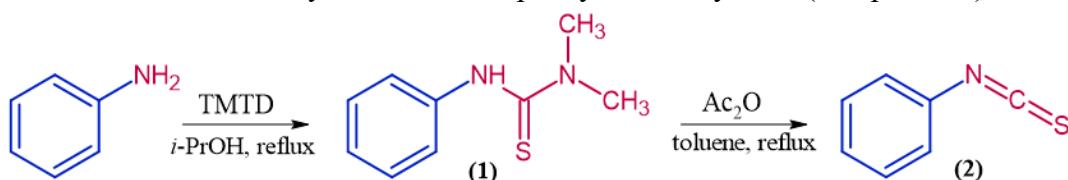


Figure 3. Synthesis scheme of the phenyl isothiocyanate.

General procedure of thiosemicarbazides synthesis

In a round bottom flask, hydrazine monohydrate 1 equivalent was dissolved in tetrahydrofuran. Then to the obtained mixture 1 equivalent of corresponding isothiocyanate solution in tetrahydrofuran, was added dropwise. After complete addition of isothiocyanate solution, mixture was stirred for half an hour more. Precipitated solid was filtered and washed with ice-cold tetrahydrofuran and water and then recrystallized from ethanol-tetrahydrofuran to yield white crystalline solid of corresponding thiosemicarbazide.

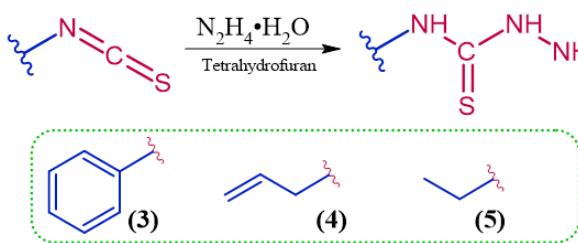
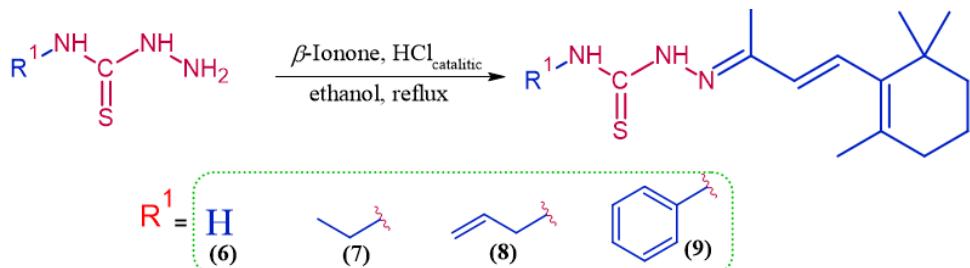



Figure 4. General synthesis scheme of the thiosemicarbazides 3-5.

General synthesis procedure of thiosemicarbazones

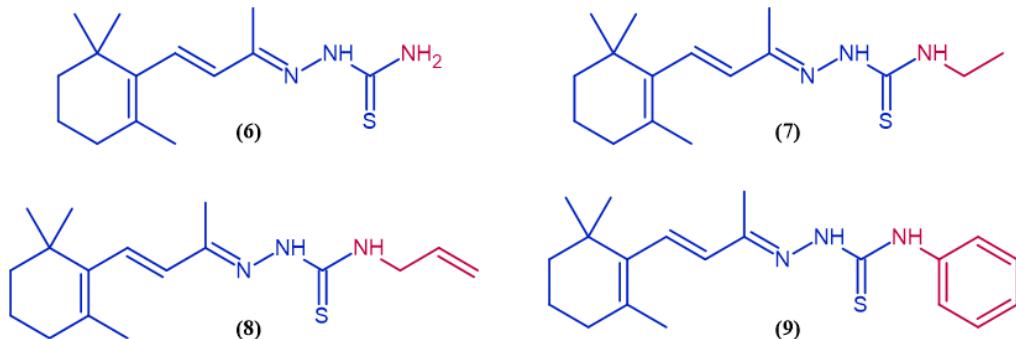
In a round bottom flask, 1 equivalent of β -ionone and 1 equivalent of corresponding thiosemicarbazide were mixed. Ethanol and 0.5 mL of hydrochloric acid was added and then mixture was refluxed for 1-4

hours. Then, reaction solution was concentrated by rotary evaporator and left overnight to result yellow crystalline solids.

Figure 5. General synthesis scheme of the thiosemicarbazones 6-9.

Antioxidant analysis by DPPH method

For the free radical scavenging activity analysis by the DPPH method, the procedure described in [30] was repeated without any modifications.


ADME analysis

ADME analysis was performed using SwissADME [31]. For this purpose, SMILES code was generated for each investigated thiosemicarbazone.

RESULTS AND DISCUSSIONS

Synthesised compounds

In total 4 thiosemicarbazones of β -ionone with different substituents at the N^4 position were synthesized. Their structure was confirmed by NMR spectroscopy. In addition, their antioxidant activity and ADME profile were also investigated. The figure 6 shows the structure of the synthesized compounds.

Figure 6. Structure of the synthesised thiosemicarbazones.

β -ionone thiosemicarbazone (6)

Yellow crystalline solid, yield 87%. **$^1\text{H NMR}$** (DMSO- d_6 ; δ , ppm): 1.02 (s, 6H); 1.44 (m, 2H); 1.57 (m, 2H); 1.68 (s, 3H); 2.01 (m, 2H); 2.05 (s, 3H); 6.11 (d, 1H); 6.58 (d, 1H); 7.74 (s, 1H); 8.17 (s, 1H). **$^{13}\text{C NMR}$** (DMSO- d_6 ; δ , ppm): 11.83; 18.62; 21.42; 28.68; 32.54; 33.76; 130.45; 132.36; 133.06; 136.64; 149.1; 178.53.

β -ionone 4-ethylthiosemicarbazone (7)

Yellow solid, yield 78%. **$^1\text{H NMR}$** (DMSO- d_6 ; δ , ppm): 1.02 (s, 6H); 1.11 (t, 3H); 1.44 (m, 2H); 1.57 (m, 2H); 1.69 (s, 3H); 2.03 (m, 5H); 3.55 (m, 2H); 6.14 (d, 1H); 6.57 (d, 1H); 8.38 (t, 1H); 10.08 (s, 1H). **$^{13}\text{C NMR}$** (DMSO- d_6 ; δ , ppm): 11.73; 14.54; 18.63; 21.43; 28.67; 32.51; 33.77; 38.24; 130.35; 132.24; 133.07; 136.69; 148.76; 177.24.

β -ionone 4-allylthiosemicarbazone (8)

Yellow solid, total yield 84%. **$^1\text{H NMR}$** (DMSO- d_6 ; δ , ppm): 1.02 (s, 6H); 1.44 (m, 2H); 1.57 (m, 2H); 1.69 (s, 3H); 2.01 (t, 2H); 2.07 (s, 3H); 4.18 (m, 2H); 5.07-5.12 (m, 2H); 5.88 (m, 1H); 6.15 (d, 1H); 6.58 (d, 1H); 8.50 (t, 1H); 10.23 (s, 1H). **$^{13}\text{C NMR}$** (DMSO- d_6 ; δ , ppm): 11.84; 18.62; 21.44; 28.69; 32.53; 33.77; 45.74; 115.61; 130.46; 132.38; 133.02; 134.95; 136.67; 149.07; 177.77.

β-ionone 4-phenylthiosemicarbazone (9)

Yellow solid, total yield 81%. ¹H NMR (DMSO-*d*₆; δ, ppm): 1.04 (s 6H); 1.45 (m 2H); 1.58 (m, 2H); 1.72 (s, 3H); 2.02 (m, 2H); 2.13 (s, 3H); 6.28 (d, 1H); 6.63 (d, 1H); 7.17 (m, 1H); 7.27-7.35 (m, 4H); 10.03 (s, 1H); 10.56 (s, 1H). ¹³C NMR (DMSO-*d*₆; δ, ppm): 12.06; 18.66; 21.51; 28.57; 28.74; 32.61; 33.83; 123.54; 125.12; 128.05; 130.71; 132.94; 133.05; 136.74; 139.04; 149.84; 176.33.

NMR spectroscopy

The figure 7 demonstrates the ¹H-NMR spectrum of compound 8 - β-ionone 4-allylthiosemicarbazone. At 10.23 ppm, there is a singlet peak characteristic for hydrogen bonded to nitrogen adjacent to the azomethine group. This signal is a characteristic for all thiosemicarbazones and is present in the spectra of all synthesized thiosemicarbazones. The methyl groups from the β-ionone moiety are found at 1.02 and 1.69 ppm, while the CH₂ groups from the β-ionone ring are found in the range between 2.01 and 1.44 ppm. The hydrogens of the olefin group of β-ionone are found at 6.15 and 6.58 ppm in the form of doublets.

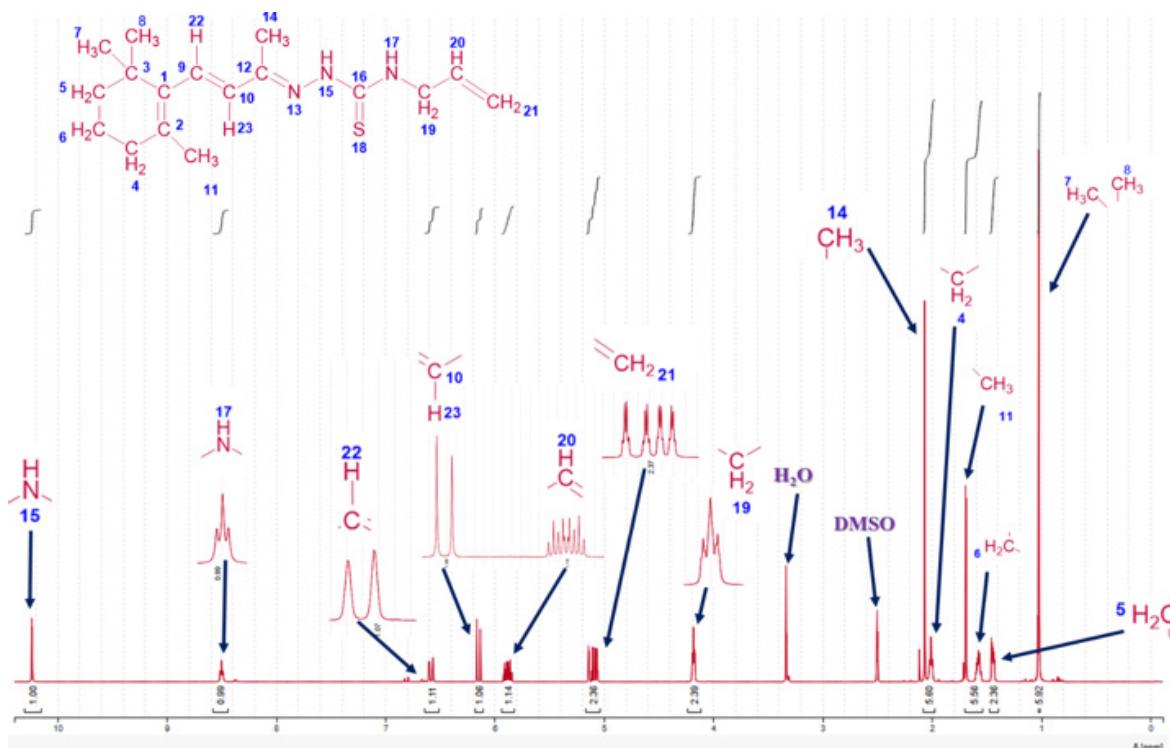
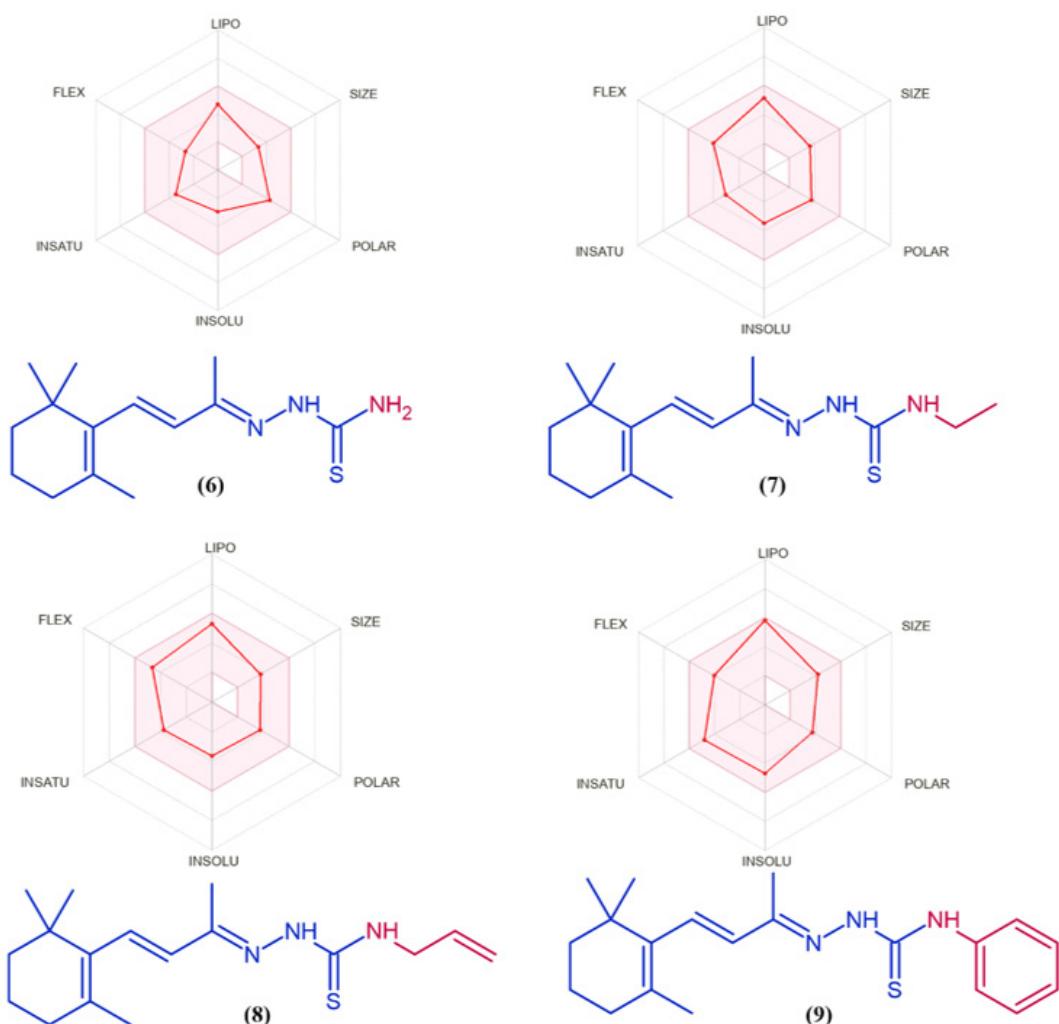



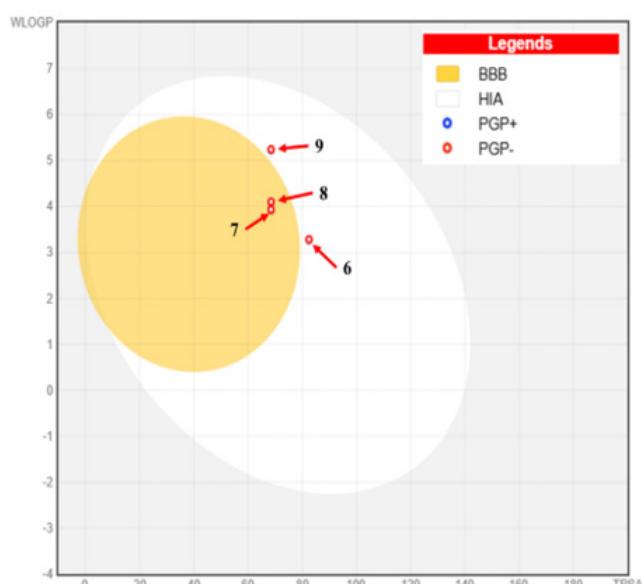
Figure 7. The ¹H-NMR spectrum of the thiosemicarbazone 8.

ADME analysis

The ADME (Adsorption Distribution Metabolism Excretion) study is an essential tool in the synthesis of biologically active compounds with potential for application in the pharmaceutical field. It allows initial evaluation of parameters and properties that are crucial for a future drug. In addition, ADME screening allows researchers to understand whether the synthesized compound fits into established theoretical pharmaceutical models and to formulate conclusions about the potential, shortcomings, and risks associated with the synthesized compounds.

On the figure 8 the structural formulas of the synthesized compounds and diagrams with six pharmacologically important properties are demonstrated. The LIPO parameter stands for lipophilicity, which is characterized by the octanol-water partition coefficient. It is considered that the optimal values for a biologically active compound should be between -0.5 and 5. Compounds which are too polar cannot pass through the cell membrane, while substances that are too lipophilic remain in the membrane. For these reasons, in order for a compound to exhibit the desired biological activity, it must have an optimal partition coefficient value, neither too high nor too low. The partition coefficient (logP) values calculated for all compounds are presented in Table 1. It is clear that all compounds have optimal values for this index.

Figure 8. Diagrams of some essential ADME parameters of thiosemicarbazones 6-9.


Table 1. ADME parameters calculated for thiosemicarbazones 6-9

Compusul	logP	M, g/mol	TPSA, \AA^2	Rotatable bonds
6	3.12	265.42	82.5	4
7	3.82	293.47	68.51	6
8	4.06	305.48	68.51	7
9	4.72	341.51	68.51	6

logP – octanol-water partition coefficient, *M* – molar mass, *TPSA* – topological polar surface area

The SIZE parameter evaluates the molar mass of the compound. The optimal range for biologically active compounds is considered to be between 150-500 g/mol. None of the synthesized compounds violate this rule. In turn, the POLAR parameter evaluates the polarity of the compound or the topological polar surface area.

This parameter is very important because it largely determines whether the compound will cross the blood-brain barrier or not. If the compound crosses this barrier, it means that it can interact with the human central nervous system and, respectively, can cause undesirable adverse effects related to this. Figure 9 shows a diagram in which substances are distributed according to their logP and TPSA values and are marked as either passing through the blood-brain barrier or not.

Figure 9. “Boiled-egg” diagram (logP/TPSA) for the synthesised thiosemicarbazones 6-9.

Only compounds **6** and **9** do not cross the blood-brain barrier, which means that they have the potential to have fewer adverse effects. Another important factor derived from Figure 9 is that the synthesized compounds will have high gastrointestinal adsorption. The FLEX parameter indicates the flexibility of the molecule - the number of rotatable bonds. It is considered that the optimal number for a biologically active molecule should be less than 10.

In addition, it was established that all compounds comply with the most popular and frequently used “drug likeness rules” or rules regarding similarity to drugs. These data are shown in Table 2. The basic rule is the rule of Lipinski, and the rest show some modifications introduced by researchers in the pharmaceutical field. It is generally recognized that substances that do not violate these rules have a much better potential to become drugs.

Table 2. Compliance with most frequently used drug likeness rules

Compound	Rule				
	Lipinski	Ghose	Veber	Egan	Muegge
6	+	+	+	+	+
7	+	+	+	+	+
8	+	+	+	+	+
9	+	+	+	+	+

Antioxidant assay

The antioxidant activity of the synthesized compounds was investigated using the DPPH method. Data from the Table 3 indicates that some of the tested compounds exhibit antioxidant activity almost twice as good as the reference compound ascorbic acid. The best result is shown by the compound **8**, with an IC_{50} at a concentration of $17.5 \mu\text{M}$ and compound **6** haven't shown a significant activity in comparison with reference compound.

Table 3. DPPH IC_{50} concentrations of tested compounds.

Compound	$IC_{50}, \mu\text{M}$	SD
6	>32.6	± 0.92
7	18.2	± 0.51
8	17.5	± 0.45
9	17.6	± 0.54
Ascorbic acid	32.6	± 0.90

CONCLUSIONS

In total four thiosemicarbazones based on β -ionone and their derivatives were synthesized. Their structure was confirmed by NMR spectroscopy. ADME analysis revealed the positive pharmacological profile of the synthesized compounds. Moreover, the synthesized compounds exhibit DPPH radical inhibition activity almost twice as good as ascorbic acid used as a reference compound, indicating an increased potential for antioxidant activity.

REFERENCES:

1. DATTANI, Saloni, SPOONER, Fiona, RITCHIE, Hannah and ROSER, Max. Causes of Death. Our World in Data. Online. 2023. Available from: <https://ourworldindata.org/causes-of-death> [Accessed: 12.09.2025]
2. DREHER, D. and JUNOD, A.F. Role of oxygen free radicals in cancer development. In: European Journal of Cancer. 1996. Vol. 32, no. 1, p. 30–38. DOI [https://doi.org/10.1016/0959-8049\(95\)00531-5](https://doi.org/10.1016/0959-8049(95)00531-5).
3. PHANIENDRA, Alugoju, JESTADI, Dinesh Babu and PERIYASAMY, Latha. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. In: Indian Journal of Clinical Biochemistry. 2014. Vol. 30, no. 1, p. 11–26. DOI <https://doi.org/10.1007/s12291-014-0446-0>.
4. TERMINI, John. Hydroperoxide-induced DNA damage and mutations. In: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2000. Vol. 450, no. 1-2, p. 107–124. DOI [https://doi.org/10.1016/s0027-5107\(00\)00019-1](https://doi.org/10.1016/s0027-5107(00)00019-1).
5. RUSNAC, Roman, GARBÚZ, Olga, YURII CHUMAKOV, TSAPKOV, Victor, CHRISTELLE HUREAU, DORIN ISTRATI and AURELIAN GULEA. Synthesis, Characterization, and Biological Properties of the Copper(II) Complexes with Novel Ligand: N-[4-(2-[1-(pyridin-2-yl)ethylidene]hydrazinecarbothioyl]amino)phenyl]acetamide. In: Inorganics, 2023. Vol. 11, no. 10, p. 408–408. DOI <https://doi.org/10.3390/inorganics11100408>.
6. KORKMAZ, Gürsel. A review of recent research on the antimicrobial activities of thiosemicarbazone-based compounds. In: Journal of New Results in Science. 2024. Vol. 13, no. 1, p. 61–83. DOI <https://doi.org/10.54187/jnrs.1464723>.
7. PINTEA, Aliona, CIURSIN, Andrei, RUSNAC, Roman, GULEA, Aurelian. Combinări coordinative ale Cu(II) în baza N-hexil-2-[(piridin-2-il)metiliden]hidrazine-1-carbotioamidei: proiectare, sinteza, evaluarea proprietăților antimicrobiene și antifungice. In: Studia Universitatis Moldaviae (Seria Științe Reale și ale Naturii), 2024, nr. 1(171), pp. 168-177. ISSN 1814-3237. DOI: [https://doi.org/10.59295/sum1\(171\)2024_21](https://doi.org/10.59295/sum1(171)2024_21)
8. QIN, Yukun, XING, Ronge, LIU, Song, LI, Kecheng, MENG, Xiangtao, LI, Rongfeng, CUI, Jinhui, LI, Bing and LI, Pengcheng. Novel thiosemicarbazone chitosan derivatives: Preparation, characterization, and antifungal activity. In: Carbohydrate Polymers. 2012. Vol. 87, no. 4, p. 2664–2670. DOI <https://doi.org/10.1016/j.carbpol.2011.11.048>.
9. PAIVA, Rojane de Oliveira, KNEIPP, Lucimar Ferreira, GOULAR, Carla Marins, ALBUQUERQUE, Mariana Almeida and ECHEVARRIA, Aurea. Antifungal activities of thiosemicarbazones and semicarbazones against mycotoxicogenic fungi. In: Ciência e Agrotecnologia. 2014. Vol. 38, no. 6, p. 531–537. DOI <https://doi.org/10.1590/s1413-70542014000600001>.
10. PADMANABHAN, Padmapriya, KHALEEFATHULLAH, Sheriff, KAVERI, Krishansamy, PALANI, Gu-nasekaran, RAMANATHAN, Giriprasath, THENNARASU, Sathiah and TIRICHURAPALLI SIVAGNAN-AM. Antiviral activity of Thiosemicarbazones derived from α -amino acids against Dengue virus. In: Journal of Medical Virology. 2016. Vol. 89, no. 3, p. 546–552. DOI <https://doi.org/10.1002/jmv.24655>.
11. GRAUR, Vasilii O., GRAUR, Ianina, BOUROSH, Pavlina, KRAVTSOV, Victor, LOZAN-TYRSHU, K., BALAN, Greta, GARBÚZ, Olga, TSAPKOV, Victor I., GULEA, Aurelian. Synthesis, Characterization, and Biological Evaluation of Some 3d Metal Complexes with 2-Benzoylpyridine 4-Allylthiosemicarbazone. In: Inorganics, 2025, vol. 13, pp. 1-19. ISSN 2304-6740. DOI: <https://doi.org/10.3390/inorganics13070249>
12. GRAUR, Vasilii O., SAVCIN, Serghei, TSAPKOV, Victor I., GULEA, Aurelian. Synthesis and antitumor activity of copper, nickel and cobalt coordination compounds with 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone. In: Studia Universitatis Moldaviae (Seria Științe Reale și ale Naturii), 2015, nr. 1(81), pp. 210-215. ISSN 1814-3237.
13. FINCH, Rick A, LIU, Mao-Chin, GRILL, Susan P, ROSE, William C, LOOMIS, Regina, VASQUEZ, Karen M, CHENG, Yung-Chi and SARTORELLI, Alan C. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. In: Biochemical Pharmacology. 2000. Vol. 59, no. 8, p. 983–991. DOI [https://doi.org/10.1016/s0006-2952\(99\)00419-0](https://doi.org/10.1016/s0006-2952(99)00419-0).

14. HEFFETER, Petra, VERONIKA F.S. PAPE, ENYEDY, Éva A, KEPPLER, Bernhard K, GERGELY SZAKÁCS and KOWOL, Christian R. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. In: *Antioxidants & Redox Signaling*. 2018. Vol. 30, no. 8, p. 1062–1082. DOI <https://doi.org/10.1089/ars.2017.7487>.
15. CIURSIN, Andrei, RUSNAC, Roman, GULEA, Aurelian. Synthesis, absorption, distribution, metabolism, excretion and antioxidant assay of some N⁴ – substituted Thiosemicarbazones of Cinnamaldehyde. In: *One Health and Risk Management*, 2025, vol. 6, nr. 3, pp. 54-65. ISSN 2587-3458. DOI: <https://doi.org/10.38045/ohrm.2025.3.05>
16. GARBÚZ, Olga, CEBAN, Emil, ISTRATI, Dorin, RAILÝAN, Nadejda, TODERASH, Ion, GULEA, Aurelian. Thiosemicarbazone-Based Compounds: Cancer Cell Inhibitors with Antioxidant Properties. In: *Molecules*, 2025, vol. 30, pp. 1-45. DOI: <https://doi.org/10.3390/molecules30092077>
17. PANTEA, Valeriana, PAVLOVSCHI, Ecaterina, STRATULAT, Silvia, GULEA, Aurelian, TAGADIUC, Olga, GUDUMAK, Valentin. Targeting redox balance: antioxidant effects of thiosemicarbazones on human peripheral blood. In: *Revista de Științe ale Sănătății din Moldova*, 2025, vol. 12, nr. 3, pp. 101-109. ISSN 2345-1467. DOI: <https://doi.org/10.52645/MJHS.2025.3.16>
18. YANG, Lijuan, LIU, Haochuang, XIA, Dasha and WANG, Shifa. Antioxidant Properties of Camphene-Based Thiosemicarbazones: Experimental and Theoretical Evaluation. In: *Molecules*. 2020. Vol. 25, no. 5, p. 1192. DOI <https://doi.org/10.3390/molecules25051192>.
19. JACOB, Íris T T, GOMES, Fabiana O S, MIRANDA, DE, V, DA, J, PEIXOTO, Christina A, SILVA, MOREIRA, Diogo R M, DE, L, JAMERSON and MARIA. Anti-inflammatory activity of novel thiosemicarbazone compounds indole-based as COX inhibitors. In: *Pharmacological Reports*. 2021. Vol. 73, no. 3, p. 907–925. DOI <https://doi.org/10.1007/s43440-021-00221-7>.
20. FINCH, Rick A, LIU, Mao-Chin, CORY, Ann H, CORY, Joseph G and SARTORELLI, Alan C. Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): an inhibitor of ribonucleotide reductase with antineoplastic activity. In: *Advances in Enzyme Regulation*. 1999. Vol. 39, no. 1, p. 3–12. DOI [https://doi.org/10.1016/s00065-2571\(98\)00017-x](https://doi.org/10.1016/s00065-2571(98)00017-x).
21. PIERALBERTO Tarasconi, CAPACCHI, Silvia, PELOSI, Giorgio, CORNIA, Mara, ALBERTINI, Roberto, BONATI, Antonio, PIER PAOLO DALL'AGLIO, LUNGHI, Paolo and PINELLI, Silvana. Synthesis, spectroscopic characterization and biological properties of new natural aldehydes thiosemicarbazones. In: *Bioorganic & Medicinal Chemistry*. 2000. Vol. 8, no. 1, p. 157–162. DOI [https://doi.org/10.1016/s0968-0896\(99\)00260-6](https://doi.org/10.1016/s0968-0896(99)00260-6).
22. CIURSIN, Andrei, TROFIM, Alina, RUSNAC, Roman. Synthesis and biotechnological study of ethyl 2-((E)-2-((E)phenylallylidene)hydrazinecarbothioamido)acetate. In: *Integrare prin cercetare și inovare.: Științe ale naturii și exakte*, 9-10 noiembrie 2023, Chișinău, Republica Moldova: Centrul Editorial-Poligrafic al Universității de Stat din Moldova, 2023, SNE, pp. 493-502. ISBN 978-9975-62-690-3.
23. ROBERTA, Paula, SOUZA, Cristina, SILVA, F.M, PAULA, Ana, NARCIMÁRIO PEREIRA COELHO, ALVES, Maria, KATO, Lucília, SILVA and LÍDIA ANDREU GUILLO. In vitro antiproliferative and apoptotic effects of thiosemicarbazones based on (-)-camphene and R-(+)-limonene in human melanoma cells. In: *PLOS ONE*.2023. Vol. 18, no. 11, p. e0295012–e0295012. DOI <https://doi.org/10.1371/journal.pone.0295012>.
24. HE Yun, DUAN Wengui, LIN Guishan, CEN Bo, BU Junwen, LEI Fuhou. Synthesis and Herbicidal Activity of Citral-based Thiosemicarbazone Compounds. In: *Chemistry and Industry of Forest Products*, 2020, 40(3): 76-84. doi: 10.3969/j.issn.0253-2417.2020.03.010
25. PAPARELLA, Antonello, SHALTIEL-HARPAZA, Liora and IBDAH, Mwafaq. β -Ionone: Its Occurrence and Biological Function and Metabolic Engineering. In: *Plants*. 2021. Vol. 10, no. 4, p. 754. DOI <https://doi.org/10.3390/plants10040754>.
26. LALKO, J., LAPCZYNSKI, A., MCGINTY, D., BHATIA, S., LETIZIA, C.S. and API, A.M. Fragrance material review on β -ionone. In: *Food and Chemical Toxicology*. 2007. Vol. 45, no. 1, p. S241–S247. DOI <https://doi.org/10.1016/j.fct.2007.09.052>.
27. SURYAWANSHI, S.N., BHAT, B.A., PANDEY, Susmita, CHANDRA, Naveen and GUPTA, Suman. Chemotherapy of leishmaniasis. Part VII: Synthesis and bioevaluation of substituted terpenyl pyrimidines. In: *European Journal of Medicinal Chemistry*. 2007. Vol. 42, no. 9, p. 1211–1217. DOI <https://doi.org/10.1016/j.ejmech.2006.10.002>.

28. BALBI, Alessandro, ANZALDI, Maria, MAZZEI, Mauro, MIELE, Mariangela, BERTOLOTTO, Maria, OTTONELLO, Luciano and FRANCO DALLEGRI. Synthesis and biological evaluation of novel heterocyclic ionone-like derivatives as anti-inflammatory agents. In: *Bioorganic & Medicinal Chemistry*. 2006. Vol. 14, no. 15, p. 5152–5160. DOI <https://doi.org/10.1016/j.bmc.2006.04.007>.
29. SHARMA, Vishal, SINGH, Gurpreet, KAUR, Harpreet, SAXENA, Ajit K. and ISHAR, Mohan Paul S. Synthesis of β -ionone derived chalcones as potent antimicrobial agents. In: *Bioorganic & Medicinal Chemistry Letters*. 2012. Vol. 22, no. 20, p. 6343–6346. DOI <https://doi.org/10.1016/j.bmcl.2012.08.084>.
30. SALIM, Inas, ABDULA, Ahmed M and NOORI, Mohammed. Synthesis, characterization of 3,5-disubstitutedaryl-4,5-dihydro-1H-pyrazole-1-carbothioamide derivatives and evaluation of their antioxidant activity. In: *Journal of Kufa for Chemical Sciences*. 2024. Vol. 4, no. 1, p. 175–191. DOI <https://doi.org/10.36329/jkcm/2024/v4.i1.13975>.
31. DAINA, Antoine, MICHELIN, Olivier and ZOETE, Vincent. SwissADME: a Free Web Tool to Evaluate pharmacokinetics, drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. In: *Scientific Reports*. 2017. Vol. 7, no. 1, p. 1–13. DOI <https://doi.org/10.1038/srep42717>.

N.B.: *The experimental material presented in the article was developed within the national project “Synthesis and study of new materials based on complex combinations with polyfunctional ligands and with useful properties in medicine, biology and technology” (SSMCCLP) (code: 010602); details at: <https://ichem.md/SSMCCLP> and project “young researchers 2024-2025” 24.80012.5007.14TC (ANCD), Republic of Moldova.*

About authors:

Andrei CIURSIN, masterand, Universitatea de Stat din Moldova.

ORCID: <https://orcid.org/0000-0002-3160-4582>

E-mail: andrei.ciursin@usm.md

Iana STOICA, masterandă, Universitatea de Stat din Moldova.

E-mail: stoicayana@gmail.com

Roman RUSNAC, doctor în științe chimice, lector universitar, cercetător științific superior, Universitatea de Stat din Moldova.

ORCID: <https://orcid.org/0000-0002-5713-5251>

E-mail: roman.rusnac@usm.md

Aurelian GULEA, academician, Universitatea de Stat din Moldova.

ORCID: <https://orcid.org/0000-0003-2010-7959>

E-mail: aurelian.gulea@usm.md

Presented: 30.09.2025