ТРЁХМЕРНЫЕ ГЕМИСИММОРФНЫЕ КРИСТАЛЛОГРАФИЧЕСКИЕ ЛИНЕЙНЫЕ ГРУППЫ РОЗЕТОЧНЫХ Р-СИММЕТРИЙ И ИХ МНОГОМЕРНЫЕ ПРИЛОЖЕНИЯ

Александр ПАЛИСТРАНТ Кафедра алгебры и геометрии

Authors

  • USM ADMIN Studia Universitas Moldaviae

Abstract

Teoria generală a P-simetriei este folosită pentru a extinde grupurile hemisimorfe liniare cristalografice tridimensionale cu P-simetriile de rozetă. În lucrare sunt prezentate lista completă a P-simetriilor minore de rozetă şi caracteristicile numerice complete ale listelor de grupuri Q-medii de P-simetrie din categoriile indicate. De asemenea, pe baza teoriei generale a P-simetriei au fost obţinute toate versiunile posibile de grupuri tridimensionale, hemisimorfe cristalografice, liniare ale P-simetriilor de rozetă, fără a se ţine cont de enantimorfismul lor. Aceasta a permis evaluarea numerică a tuturor grupurilor „hemisimorfe” de simetrie ale spaţiului euclidian de dimensiunea cinci, care păstrează invariant în acest spaţiu un plan tridimensional şi o dreaptă pe plan. Based on the general P-symmetry theory, three–dimensional hemisimmorfic crystallographic linear groups are expanded up to groups of rosettal P-symmetries. The list of junior rosettal P-symmetries of this category is completely presented and the full numerical review of Q-middle groups of noted P-symmetries of the mentiomed above category is given. The number of different „hemisymmorfhic” symmetry groups of five-dimensional Euclidian space, which keep in it invariant the three-dimensional plane with straight line in it is established by means of revealed every possible (from the point of view of general P-symmetries theory) different, without taking into account enantiomorphism, three dimensional crystallographic linear rosettal P-symmetries.

Author Biography

USM ADMIN, Studia Universitas Moldaviae

Web programator

Published

2008-01-13

Issue

Section

Articles